Cho \(\Delta ABC\)với \(\widehat{A}=105^o,\widehat{B}=45^o\). Đường trung tuyến BM cắt phân giác góc C tại I. Tính \(\widehat{BAI}\)
cho \(\Delta\)ABC vs \(\widehat{A}=105^0\), \(\widehat{B}=45^0\). Đường trung tuyến BM của \(\Delta ABC\)cắt tia phân giác của \(\widehat{ACB}\)tại I .Tính góc BAI
Cho \(\Delta ABC\)có \(\widehat{B}=60^o\),\(\widehat{C}=45^o\). Trong \(\Delta ABC\)vẽ Bx sao cho \(\widehat{xBC}=15^o\). Đường vuông góc với BA tại A cắt Bx tại I. Tính \(\widehat{ICB}\)
Trên BC lấy điểm H sao cho ^BAH=600
Xét \(\Delta\)ABH: ^ABH=^BAH=600 => \(\Delta\)ABH là tam giác đều
=> AB=AH=BH (1)
Ta có: ^ABI=^ABC-^CBx=600-150=450.
Xét \(\Delta\)BAI: ^BI=900; ^ABI=450 => \(\Delta\)BAI vuông cân tại A => AB=AI (2)
Từ (1);(2) => AH=AI
Tính được ^BAC=1800-600-450=750 => ^HAC=750-^BAH=750-600=150 => ^HAC=150 (3)
Lại có: ^IAC=^BAH-^BAC=900-750=150 (4)
Từ (3) và (4) => ^HAC=^IAC
Xét \(\Delta\)AHC và \(\Delta\)AIC: AH=AI; ^HAC=^IAC; AC chung
=> \(\Delta\)AHC=\(\Delta\)AIC (c.g.c) => ^ACH=^ACI.
Vì ^ACH=450 => ^ACI=450 => ^ACH+^ACI=^ICH=900 hay ^ICB=900
Vậy ^ICB=900.
Chỗ ^IAC=^BAH-^BAC bạn sửa thành ^IAC=^BAI-^BAC nhé. Mình gõ nhầm đấy.
cho tam giác ABC có góc A = 105 độ ; góc B = 45 độ . Đường trung tuyến BM của tam giác ABC cắt tia phân giác của góc ACB tại I . Tính góc BAI
cho tam giác ABC có góc A = 105 độ ; góc B = 45 độ . Đường trung tuyến BM của tam giác ABC cắt tia phân giác của góc ACB tại I . Tính góc BAI ???
Giúp tớ nhé !!!
Cho \(\Delta ABC\) biết \(\widehat{B}-\widehat{C}=40^o\)
a) Tia phân giác \(\widehat{A}\) cắt BC tại M. Tính \(\widehat{AMC}\)
b) Từ trung điểm D của BC, dựng đường thẳng vuông góc với BC, cắt AC tại E. Tính số đo \(\widehat{ABE}\)
Cho \(\Delta ABC\), đường trung tuyến AM. Tia phân giác \(\widehat{AMB}\) cắt AB tại D, tia phân giác \(\widehat{AMC}\) cắt AC tại E. Gọi I là giao điểm của AM và DE. Hỏi \(\Delta ABC\) cần có điều kiện gì để DE là đường trung bình của \(\Delta ABC\)?
AD/DB=AM/MB
AE/EC=AM/MC
mà MB=MC
nên AD/DB=AE/EC
=>DE//BC
Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1
=>AM/MB=AM/MC=1
=>ΔABC vuông tại A
Cho\(\Delta ABC\)có \(\widehat{A}=a^o\left(0< a< 90^o\right)\). Các phân giác BD, CE cắt nhau tại O. Tia phân giác góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác góc ngoài tại đỉnh C cắt BO tại N.
a) Tính số đo\(\widehat{BOC}\)
b) Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c) Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Bài 3. Cho tam giác ABC có \(\widehat{BAC}=a\left(0^o< a< 180^o\right)\) , hai đường phân giác của góc B, C cắt nhau tại T. Tính theo \(\widehat{BTC}\) theo a. Tìm a biết \(\widehat{BTC}=2\times\widehat{BAC}\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)
Xét ΔIBC có
\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)
Cho \(\Delta ABC\)có \(\widehat{A}=90^o\), gọi d là đường thẳng vuông góc với BC tại C, phân giác của\(\widehat{B}\)cắt AC tại D, cắt d tại E, kẻ CH vuông góc với DE. Chứng minh CH là phân giác của \(\widehat{DCE}\)
Mk ko còn thời gian bạn tham khảo nhé
https://olm.vn/hoi-dap/detail/92770368985.html
cho \(\Delta ABC\)có \(\widehat{A=90^o}\)\(\left(0< a< 90^o\right)\). Các phân giác BD, CE cắt nhau tại O. Tia phân giác góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác góc ngoài tại đỉnh C cắt tia BO tại N.
a) Tính số đo \(\widehat{BOC}\)
b) Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)