Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
giang
Xem chi tiết
Đặng Lê Hưng
Xem chi tiết
Nguyễn Minh Quang
Xem chi tiết
Hoàng Phúc
7 tháng 3 2016 lúc 21:39

|2x-7| >= 0

=>|2x-7|+5-2x >= 5-2x

=>AMin=5-2x(*)

dấu "=" xảy ra<=>|2x-7|=0<=>x=7/2

thay x=7/2 vào (*) ta có:

AMin=5-2.7/2=-2

Vậy AMin=-2 tại x=7/2

Trần Trương Quỳnh Hoa
13 tháng 3 2016 lúc 6:31

|2x-7| >= 0

=>|2x-7|+5-2x >= 5-2x

=>AMin=5-2x(*)

dấu "=" xảy ra<=>|2x-7|=0<=>x=7/2

thay x=7/2 vào (*) ta có:

AMin=5-2.7/2=-2

Vậy AMin=-2 tại x=7/2

nguyen minh hieu
Xem chi tiết
NGUYỄN THẾ HIỆP
9 tháng 2 2017 lúc 22:55

Có: \(A=\sqrt{\left(2x+1\right)^2+4}+3.I3y^2I+5\ge\sqrt{4}+3.0+5=7\)

dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2\\y=0\end{cases}=0}\)\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=0\end{cases}}\)

Đinh Đức Hùng
10 tháng 2 2017 lúc 11:36

Vì \(\left(2x+1\right)^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+4\ge4\)

\(\Rightarrow\sqrt{\left(2x+1\right)^2+4}\ge\sqrt{4}=2\)

\(3\left|3y^2\right|+5\ge5\)

Cộng vế với vế ta được :\(A=\sqrt{\left(2x+1\right)^2+4}+3\left|3y^2\right|+5\ge2+5=7\) có gtnn là 7

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(2x+1\right)^2=0\\\left|3y^2\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=4\end{cases}}}\)

Vậy gtnn của A là 7 <=> x = - 1/2 ; y = 0

Bui Thu Phuong
Xem chi tiết
Nguyễn Thị Xuân Dung
23 tháng 7 2018 lúc 11:21

\(\left(2x+1\right)\left(x-5\right)=2x^2-9x-5=2\left(x^2-\frac{9}{2}x+\frac{81}{16}\right)-\frac{121}{8}=2\left(x-\frac{9}{4}\right)^2-\frac{121}{8}\ge-\frac{121}{8} \)

Vậy GTNN của biểu thức là \(-\frac{121}{8}\)khi x = \(\frac{9}{4}\)

Le Ngan
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
Edogawa Conan
1 tháng 1 2020 lúc 21:58

Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)

M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)

M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)

Đặt \(\frac{1}{x^2+1}=y\)

Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)

Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10

<=> x2 = 9 <=> \(x=\pm3\)

Vậy MinM = 19/20 khi x = 3 hoặc x = -3

Khách vãng lai đã xóa
tth_new
2 tháng 1 2020 lúc 10:20

Dạng này bạn chỉ cần để ý: \(x^4+2x^2+1=\left(x^2+1\right)^2\) là bình phương của một biểu thức.

Rồi đặt \(x^2+1=y\Rightarrow x^2=y-1\) rồi thay vào M là được!

Khách vãng lai đã xóa
Hằng Nguyễn Thị
Xem chi tiết
nguyen thi thu huyen
Xem chi tiết
Thắng Nguyễn
30 tháng 5 2016 lúc 17:17

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

Thắng Nguyễn
30 tháng 5 2016 lúc 17:28

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)