Những câu hỏi liên quan
cc cc
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
alibaba nguyễn
19 tháng 10 2017 lúc 16:10

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

Nguyễn Thu Thủy
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Baek Hyun
Xem chi tiết
dbrby
Xem chi tiết
Le Van Hung
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2018 lúc 14:03

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(VT=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\)

\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\)

Cần chứng minh \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)

\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{xz}}{xz\left(4-xz\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)

Cauchy-Schwarz: \(\left(x+y+z\right)^2\ge\left(1+1+1\right)\left(xy+yz+xz\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)^2\)

\(\Leftrightarrow3\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{xz}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)

\(\Leftrightarrow\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c\left(4-c^2\right)}\ge1\left(\odot\right)\)

Ta có BĐT phụ: \(\dfrac{a}{a^2\left(4-a^2\right)}\le-\dfrac{1}{9}a+\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{\left(a-1\right)^2\left(a^2-2a-9\right)}{9a\left(a-2\right)\left(a+2\right)}\le0\forall0< a\le1\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(VT_{\left(\odot\right)}\ge\dfrac{-\left(a+b+c\right)}{9}+\dfrac{4}{9}\cdot3\ge\dfrac{-3}{9}+\dfrac{12}{9}=1=VP_{\left(\odot\right)}\)

Dấu "=" <=> x=y=z=1

Đặng Thái Dương
23 tháng 4 2020 lúc 15:33

em là pô pô nê người con của Thái Nguyên

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 4 2020 lúc 19:12

Bài này có nhiều cách làm. Cách khác:

Gọi vế trái của BĐT là P. Khi đó biến đổi P như sau:

\(P=\left(\frac{x^2}{4-yz}+\frac{y^2}{4-xz}+\frac{z^2}{4-yx}\right)+\left(x^2+y^2+z^2\right)\left(\frac{1}{4-yz}+\frac{1}{4-xz}+\frac{1}{4-yx}\right)\)

Theo BĐT Bunhiacopsky dạng phân thức ta có:

\(\frac{x^2}{4-yz}+\frac{y^2}{4-xz}+\frac{z^2}{4-yx}\ge\frac{\left(x+y+z\right)^2}{12-\left(xy+yz+zx\right)}\)

\(\frac{1}{4-yz}+\frac{1}{4-xz}+\frac{1}{4-yx}\ge\frac{9}{12-\left(xy+yz+zx\right)}\)

Do đó ta được:

\(P\ge\frac{\left(x+y+z\right)^2}{12-\left(xy+yz+xz\right)}+\frac{9\left(x^2+y^2+z^2\right)}{12-\left(xy+yz+xz\right)}\)

\(\ge\frac{3\left(xy+yz+xz\right)}{12-\left(xy+yz+xz\right)}+\frac{9\left(xy+yz+xz\right)}{12-\left(xy+yz+xz\right)}\)

\(\ge\frac{12\left(xy+yz+xz\right)}{12-\left(xy+yz+zx\right)}\ge\frac{36\sqrt[3]{x^2y^2z^2}}{12-3\sqrt[3]{x^2y^2z^2}}\)

đặt \(\sqrt[3]{xyz}=t\le\frac{x+y+z}{3}=1\). Khi đó ta có:

\(\frac{36t^2}{12-3t^2}-4t^3\Leftrightarrow12t^2\left(t-1\right)\left(t^2+t-3\right)\ge0\)

Đánh giá BĐT cuối cùng luôn đúng. BĐT được chứng minh xong

Khách vãng lai đã xóa
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết