Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Đoàn Anh Sơn
Xem chi tiết
Akai Haruma
9 tháng 7 2023 lúc 20:02

Lời giải:

PT $\Leftrightarrow x^3+x+1-y(x^2-3)=0$

$\Leftrightarrow y=\frac{x^3+x+1}{x^2-3}$ (hiển nhiên $x^2-3\neq 0$ với mọi $x$ nguyên) 

Để $y$ nguyên thì $\frac{x^3+x+1}{x^2-3}$ nguyên 

$\Leftrightarrow x^3+x+1\vdots x^2-3$
$\Rightarrow x(x^2-3)+4x+1\vdots x^2-3$
$\Rightarrow 4x+1\vdots x^2-3$

Hiển nhiên $4x+1\neq 0$ nên $|4x+1|\geq x^2-3$
Nếu $x\geq \frac{-1}{4}$ thì $4x+1\geq x^2-3$
$\Leftrightarrow x^2-4x-4\leq 0$

$\Leftrightarrow (x-2)^2\leq 8<9$

$\Rightarrow -3< x-2< 3$

$\Rightarrow -1< x< 5$

$\Rightarrow x\in \left\{0; 1; 2; 3; 4\right\}$.

Nếu $x< \frac{-1}{4}$ thì $-4x-1\geq x^2-3$

$\Leftrightarrow x^2+4x-2\leq 0$

$\Leftrightarrow (x+2)^2-6\leq 0$

$\Leftrightarrow (x+2)^2\leq 6< 9$

$\Rightarrow -3< x+2< 3$
$\Rightarrow -5< x< 1$

$\Rightarrow x\in\left\{-4; -3; -2; -1\right\}$

Đến đây bạn thay vào tìm $y$ thôi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 5 2017 lúc 3:10

a)  x 3 = 2 y ⇒ x y = 6 ⇒ x , y ∈ Ư ( 6 )   ⇒ ( x ; y ) = ( 1 ; 6 ) ; ( 6 ; 1 ) ; ( 2 ; 3 ) ; ( 3 ; 2 )

b)  − 3 x = y 2 ⇒ − x y = 6 ⇒ − x , y ∈ Ư ( 6 )  

⇒ ( x ; y ) = ( − 1 ; 6 ) ; ( − 6 ; 1 ) ; ( − 2 ; 3 ) ; ( − 3 ; 2 ) ; ( 1 ; − 6 ) ; ( 6 ; − 1 ) ( 2 ; − 3 ) ; ( 3 ; − 2 )

Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 4 2022 lúc 1:12

\(x^2+3x+5=xy+2y\\ \Leftrightarrow x^2+3x-xy-2y+5=0\\ \Leftrightarrow x\left(x+2\right)-y\left(x+2\right)+\left(x+2\right)+3=0\\ \Leftrightarrow\left(x+2\right)\left(x-y+1\right)=-3=\left(-1\right)\cdot3=\left(-3\right)\cdot1\)

\(TH_1:\left\{{}\begin{matrix}x+2=-3\\x-y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-5\end{matrix}\right.\to\left(-5;-5\right)\\ TH_2:\left\{{}\begin{matrix}x+2=3\\x-y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\to\left(1;3\right)\\ TH_3:\left\{{}\begin{matrix}x+2=1\\x-y+1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\to\left(-1;3\right)\\ TH_4:\left\{{}\begin{matrix}x+2=-1\\x-y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\end{matrix}\right.\to\left(-3;-5\right)\)

Vậy \(\left(x;y\right)=\left(-5;-5\right);\left(1;3\right);\left(-1;3\right);\left(-3;-5\right)\)

Lizy
Xem chi tiết

Em kiểm tra lại đề bài, chỗ \(A^2\)

Sakura
Xem chi tiết
Phạm thị Mỹ Hằng
Xem chi tiết
Akai Haruma
18 tháng 3 2021 lúc 2:02

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

๖ۣۜØʑąωą кเşşッ
Xem chi tiết

x3+3x−5−y(x2+2)=0⇒x3+3x−5=y(x2+2)x3+3x−5−y(x2+2)=0⇒x3+3x−5=y(x2+2)

⇒y=x3+3x−5x2+2=x+x−5x2+2⇒y=x3+3x−5x2+2=x+x−5x2+2

Để y nguyên ⇒x−5x2+2⇒x−5x2+2 nguyên với x nguyên

Đặt x−5x2+2=ax−5x2+2=a với a nguyên ⇒ax2−x+2a+5=0⇒ax2−x+2a+5=0 (1)

=>(1) có nghiệm nguyên

Xét Δ=1−4a(2a+5)=−8a2−20a+1≥0=>Δ=1−4a(2a+5)=−8a2−20a+1≥0

⇒−5−33–√4≤a≤−5+33–√4⇒a=−2;−1;0⇒−5−334≤a≤−5+334⇒a=−2;−1;0

a=−2⇒−2x2−x+1=0⇒x=−1⇒y=x3+3x−5x2+2=−3a=−2⇒−2x2−x+1=0⇒x=−1⇒y=x3+3x−5x2+2=−3

a=−1⇒−x2−x+3=0a=−1⇒−x2−x+3=0 =>không có nghiệm nguyên

a=0⇒x−5=0⇒x=5⇒y=x+a=5a=0⇒x−5=0⇒x=5⇒y=x+a=5

Vậy có 2 cặp số nguyên (x;y) thỏa mãn phương trình là (-2;-3) và (5;5)

Trần Thanh Trà
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 22:25

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

Đinh Thị Thu Hằng
Xem chi tiết