\(a_n=\frac{1+\left(\frac{n}{n+2}\right)^n}{1-\left(\frac{n}{n+2}\right)^n}\)
cho n số thực dương \(a_{_{ }1},a_2,...,a_n\)có tổng bằng 1. Chứng minh rằng:
a) \(\left(a_1+\frac{1}{a_2}\right)^2+\left(a_2+\frac{1}{a_3}\right)^2+...+\left(a_n+\frac{1}{a_1}\right)^2\ge\left(\frac{n^2+1}{n}\right)^2\)
b) \(\left(a_1+\frac{1}{a_1}\right)^2+\left(a_2+\frac{1}{a_2}\right)^2+...+\left(a_n+\frac{1}{a_n}\right)^2\ge\left(\frac{n^2+1}{n}\right)^2\)
\(a_n=\frac{1-\frac{1}{6}.\left(-\frac{n}{n+2}\right)^{n-3}}{1+\frac{1}{6}.\left(-\frac{n}{n+2}\right)^{n-3}}\)
với \(a_1,a_2,a_3,.....,a_n>0;a_1+a_2+a_3+....+a_n=k\)
Chứng minh\(\left(a_1+\frac{1}{a_2}\right)^2+\left(a_2+\frac{1}{a_3}\right)^2+...+\left(a_n+\frac{1}{a_1}\right)^2\ge\frac{1}{n}\left(\frac{k^2+n^2}{k}\right)^2\)
Cho dãy số \(\left(a_n\right)\) xác định bởi công thức:
\(\hept{\begin{cases}a_1=1;a_2=2;\\na_{n+2}=\left(3n+2\right)a_{n+1}-2\left(n+1\right)a_n;n=1;2;3...\end{cases}}\)
a) Tìm công thức số hạng tổng quát của dãy \(\left(a_n\right)\)
b)Chứng minh \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\frac{n\left(n+1\right)}{2};\forall n\inℕ^∗\)
c) Tính \(lim\left(\frac{a_1}{3}+\frac{a_2}{3^2}+...+\frac{a_n}{3^n}\right)\)
Cho \(\hept{\begin{cases}a_1>a_2>...>a_n>0\\1\le k\in Z\end{cases}}\)
CMR : \(a_1+\frac{1}{a_n\left(a_1-a_2\right)^k\left(a_2-a_3\right)^k...\left(a_{n-1}-a_n\right)^k}\ge\frac{\left(n-1\right)k+2}{\sqrt[\left(n-1\right)k+2]{k^{\left(n-1\right)k}}}\)
\(a_n=\frac{1-\frac{1}{6}\left(\frac{1-n}{1+n}\right)^{n-3}}{1+\frac{1}{6}\left(\frac{1-n}{1+n}\right)^{n-3}}\)
Cho a1,a2,...,an thuộc {0;1} và a1+a2+...+an≤1.
CMR: \(\frac{a_1.a_2....a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)
Ta có:
\(1-a_1\ge a_2+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_2a_3...a_n}\)
\(1-a_2\ge a_1+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_1a_3...a_n}\)
....
\(1-a_n\ge a_1+a_2+...+a_{n-1}\ge\left(n-1\right)\sqrt[n-1]{a_1a_2...a_{n-1}}\)
Nhân vế với vế:
\(\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)\ge\left(n-1\right)^n.a_1a_2...a_n\)
\(\Leftrightarrow\frac{a_1a_2...a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)
Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{n}\)
Cho n số dương a1,a2 ,...,an. Chứng minh rằng :
\(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2\)
Áp dụng bất đẳng thức Cô - si với n số dương ta được
\(a_1+a_2+...+a_n\ge n\sqrt[n]{a_1.a_2....a_n}\)
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\ge n\sqrt[n]{\frac{1}{a_1}.\frac{1}{a_2}....\frac{1}{a_n}}\)
Suy ra \(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2.\sqrt[n]{1}=n^2\)
(dấu "=" xẩy ra <=> a1=a2 =...=an)
Theo bat dang thuc cauchy ta co
a1+a2+...+an lon hon hoc bang n.can bac n cua (a1.a2....an) (1)
1/a1+1/a2...1/an lon hon hoac bang n.1/can bac n cua (a1.a2...an) (2)
Nhan 2 ve (1) va (2) ta duoc
(a1+a2+...+an).(1/a1+1/a2+...1/an) lon hon hoac bang n tren 2
=>1/a1+1/a2+...1/an lon hon hoac bang n tren 2/a1+a2+...+an
Dau bang xay ra khi a1=a2=...=an
Mk giai co hieu ko
Xét tính bị chặn của các dãy số sau:
a) \(\left( {{a_n}} \right)\) với \({a_n} = \cos \frac{\pi }{n}\);
b) \(\left( {{b_n}} \right)\) với \({b_n} = \frac{n}{{n + 1}}\)
a) Ta có: \( - 1 \le \cos \frac{\pi }{n} \le 1,\forall n \in {\mathbb{N}^*} \Leftrightarrow - 1 \le {a_n} \le 1,\forall n \in {\mathbb{N}^*}\).
Vậy dãy số \(\left( {{a_n}} \right)\) bị chặn.
b) \(\forall n \in {\mathbb{N}^*}\) ta có:
\(n > 0 \Leftrightarrow n + 1 > 0 \Leftrightarrow \frac{n}{{n + 1}} > 0 \Leftrightarrow {b_n} > 0\). Vậy \(\left( {{b_n}} \right)\) bị chặn dưới.
\({b_n} = \frac{n}{{n + 1}} = \frac{{\left( {n + 1} \right) - 1}}{{n + 1}} = 1 - \frac{1}{{n + 1}}\)
Vì \(n + 1 > 0 \Leftrightarrow \frac{1}{{n + 1}} > 0 \Leftrightarrow - \frac{1}{{n + 1}} < 0 \Leftrightarrow 1 - \frac{1}{{n + 1}} < 1 \Leftrightarrow {b_n} < 1\). Vậy \(\left( {{b_n}} \right)\) bị chặn trên.
Ta thấy dãy số \(\left( {{b_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{b_n}} \right)\) bị chặn.