Tìm GTLN của biểu thức : M=|x-3|-|x+1|
HELP MEEEEEE.........
cho x+y=1 .Tìm gtln của biểu thức M=x^3+y^3
Ta có :
M = x3 + y3 = ( x + y ) ( x2 - xy + y2 ) = x2 + y2 - xy = ( x2 + 2xy + y2 ) - 3xy
= 1 - 3xy
Mà \(xy\le\frac{\left(x+y\right)^2}{4}\)\(\Rightarrow3xy\le\frac{3.\left(x+y\right)^2}{4}=\frac{3}{4}\)\(\Rightarrow-3xy\ge-\frac{3}{4}\)
\(\Rightarrow M=1-3xy\ge1-\frac{3}{4}=\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 0,5
Sửa đề là tìm min nhé! :) Em có một cách khác,khác với cách mà mọi người hay làm như sau:
Với mọi số thực k không âm,ta luôn có: \(\left(x+k\right)\left(x-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(x+k\right)\left(x^2-x+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow x^3-x^2+\frac{1}{4}x+kx^2-kx+\frac{1}{4}k\ge0\)
\(\Leftrightarrow x^3+\left(k-1\right)x^2-\left(k-\frac{1}{4}\right)x+\frac{1}{4}k\ge0\)
\(\Leftrightarrow x^3\ge-\left(k-1\right)x^2+\left(k-\frac{1}{4}\right)x-\frac{1}{4}k\)
Chọn k = 1 ta được: \(x^3\ge\frac{3}{4}x-\frac{1}{4}\).Tương tự với y ta được: \(y^3\ge\frac{3}{4}y-\frac{1}{4}\)
Cộng theo vế hai BĐT trên,ta được: \(M=x^3+y^3\ge\frac{3}{4}\left(x+y\right)-\frac{1}{2}=\frac{1}{4}\)
Dấu "=" xảy ra khi x = y = 1/2
Vậy...
Tìm x để biểu thức M=3/(2x^2-3x+4) đạt GTLN. Khi đó hãy tìm GTLN của biểu thức M.
Cho biểu thức A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
và B=\(\dfrac{x^2+x-2}{x^3-1}\)
a Rút gọn biểu thức M=A.B
b Tìm x thuộc Z để M thuộc Z
c Tìm GTLN của biểu thức N=\(A^{-1}-B\)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Cho x , y E Z a) Với giá trị nào của x thì biểu thức A = 1000 - |x+5| có GTLN ; tìm GTLN đó .
b) Với giá trị nào của x thì biểu thức B = | y - 3 | + 50 có GTLN ; tìm GTLN đó
c) Với giá trị nào của x và y thì biểu thức C = | x - 100 | + | y +200 | - 1 có GTLN ; tìm GTLN đó .
Cho hai số x và y thỏa mãn điều kiện : 3*x + y =1
a, tìm GTNN của biểu thức M= 3*x^2 + y^2
b, Tìm GTLN của biểu thức N= x*y
Ta có: 3x + y = 1 => y = 1 - 3x
a, Thay y = 1 - 3x vào M, ta có:
\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)
\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)
Vậy GTNN M = 1/4 khi x = y = 1/4
b, Thay y = 1 - 3x vào N
\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)
\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)
Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)
Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2
(2−3xx2+2x−3−x+31−x−x+1x+3):3x+12x3−1(2−3xx2+2x−3−x+31−x−x+1x+3):3x+12x3−1
và B=x2+x−2x3−1x2+x−2x3−1
a Rút gọn biểu thức M=A.B
b Tìm x thuộc Z để M thuộc Z
c Tìm GTLN của biểu thức N=A−1−B
tìm GTLN của biểu thức P=x+\(\sqrt{1-2x-x^2}\)
help me nhoa moi nguoi
Ta có:
\(2P=2x+2\sqrt{1-2x-x^2}\)
\(=\left(\left(x+2x-1\right)+2\sqrt{1-2x-x^2}-1\right)-x^2+2\)
\(=-\left(\sqrt{1-2x-x^2}-1\right)^2-x^2+2\le2\)
\(\Rightarrow P\le1\)
Vậy GTLN là P = 1 tại x = 0
Tìm GTLN, GTNN của các biểu thức sau và tìm điều kiện của x để biểu thức có GTLN, GTNN:
C=/x+1/+/x+2/+/x+3/+/x+4/+/x+5/
D=/x-1/+/x-2/+/x-3/+....+ /x-2017/
Giúp mk nha !