Tìm tất cả số tự nhiên n để n3-n2-7n+10 là số nguyên tố
Tìm tất cả các số tự nhiên n để n^3-n^2-7n+10 là số nguyên tố
Ta có:\(P=n^3-n^2+7n+10\)
\(=n^3-2n^2+n^2-2n-5n+10\)
\(=n^2\left(n-2\right)+n\left(n-2\right)-5\left(n-2\right)\)
\(=\left(n-2\right)\left(n^2+n-5\right)\)
Vì P là số nguyên tố nên
\(n-2=1\Rightarrow n=3\)(nhận)
\(n^2+n-5=1\)\(\Rightarrow n^2+n-6=0\Rightarrow\left(n+3\right)\left(n-2\right)=0\Rightarrow n=-3\left(l\right);n=2\left(n\right)\)
Ta có:\(\hept{\begin{cases}n=3\Rightarrow P=7\left(n\right)\\n=2\Rightarrow P=0\left(l\right)\end{cases}}\)
Vậy n=3
\(P=n^3-n^2-7n+10=\left(n-2\right)\left(n^2+n-5\right)\)
- Với \(n-2< 0\Leftrightarrow n< 2\).
Bằng cách thử trực tiếp \(n=0,n=1\)thu được \(n=1\)thỏa mãn \(P=3\)là số nguyên tố.
- Với \(n-2\ge0\)thì \(n-2\ge0,n^2+n-5>0\)khi đó \(P\)có hai ước tự nhiên là \(n-2,n^2+n-5\).
Để \(P\)là số nguyên tố thì:
\(\orbr{\begin{cases}n-2=1\\n^2+n-5=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\\n=2,n=-3\end{cases}}\)
Thử lại các giá trị trên thu được \(n=3\)thì \(P=7\)thỏa mãn.
Vậy \(n=1\)hoặc \(n=3\).
Tìm Tìm số tự nhiên n để :
A=n3-n2+n-1 là số nguyên tố.
Tìm số tự nhiên n để p là số nguyên tố biết : n3-n2+n-1
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
Tìm tất cả các số tự nhiên n để n 2 + 16 n là số nguyên tố.
A. n=11
B. n=17
C. n=1
D. n=15
Tìm tất cả các số tự nhiên n để n 2 + 12 n là số nguyên tố.
A. n=11
B. n=13
C. n=2
D. n=1
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
tìm tất cả số tự nhiên n để 5 mũ n + 10 là số nguyên tố
Xét 2 trường hợp:
TH1: n = 0
5ⁿ + 10 = 5⁰ + 10 = 11 là số nguyên tố
TH2: n ≠ 0
Ta có:
5ⁿ ⋮ 5
10 ⋮ 5
⇒ (5ⁿ + 10) ⋮ 5
⇒ 5ⁿ + 10 là hợp số
Vậy n = 0 thì 5ⁿ + 10 là số nguyên tố
Nếu đề bài là:
5n+10 \(\in\) P
⇔ 5n+10 = 5
⇒ n + 10 = 1
⇒ n = -9 (loại)
n \(\in\) \(\varnothing\)
Nếu đề bài là:
5n + 10 \(\in\) P
với n = 0 ta có 5n + 10 = 11 (thỏa mãn)
Với n ≥ 1 ta có 5n + 10 = \(\overline{..5}\) + 10 = \(\overline{...5}\) (là hợp số loại)
Vậy n = 0
tìm tất cả số tự nhiên n để 5^n + 10 là số nguyên tố.
Các hảo hán cíu iem với ạ :<
TH1. Đề bài là: 5n + 10 \(\in\) P
Với n = 0 ⇒ 5n + 10 = 1 + 10 = 11 (thỏa mãn)
Với n ≥ 1 ⇒ 5n + 10 = \(\overline{..5}\)+ 10 = \(\overline{..5}\) ⋮ 5 (loại)
Vậy n = 0
TH2. Đề bài là: 5n +10 \(\in\) P
5n+10 \(\in\) P ⇔ n + 10 = 1
⇒ n = -9 (loại)
n \(\in\) \(\varnothing\)
P=n3/6 + n2/2 + n/3 + (2n+1)/(1-2n) với n là số nguyên. tìm tất cả các số n để giá trị của P là một số nguyên
\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)
Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp
nên n^3+3n^2+2n chia hết cho 3!=6
=>Để P nguyên thì 2n+1/1-2n nguyên
=>2n+1 chia hết cho 1-2n
=>2n+1 chia hết cho 2n-1
=>2n-1+2 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)