cho tam giác DEF. Đường trung trực của đoạn DE cắt EF tại I. Trên tia ID lấy K sao IK=IF. Chứng minh KF=DE
VẼ HÌNH GIÙM MK VỚI NHA, thank you nhiều
cho tam giác DEF. Đường trung trực của đoạn DE cắt EF tại I. Trên tia ID lấy K sao IK=IF. Chứng minh KF=DE
hình bạn tự vẽ nha
TA CÓ : ΔDIL = ΔEIL ( c − g − c)
⇒DI = EI ΔDÌF = ΔEIK (c − g − c)
⇒DI = EI; DF = EK ΔFEK = ΔEFD ( c − g − c )
⇒EK = DE
Cho tam giác DEF, đường trung trực của đoạn thẳng DE cắt EF tại I. Trên tia đối của tia ID lấy điểm K sao cho IK = IF. Chứng minh KF//DE
Xét ΔIDE và ΔIKF có
ID/IK=IE/IF
góc DIE=góc KIF
DO đó: ΔIDE đồng dạng với ΔKF
=>góc IDE=góc IKF
=>DE//FK
Cho tam giác DEF, đg trung trực của đoạn thẳng DE cắt cạnh EF tại I. Trên tia đối của tia ID, lấy K sao cho IK= IF. C/m KF // DE
Cho tam giác DEF. Đường trung trực của đoạn thẳng DE cắt cạnh DF tại I.Trên tia đối của tia ID lấy K sao cho IK=IF. Chứng minh rằng KF song song với DE
Cho đoạn thẳng EF, gọi I là trung điểm của EF. Trên đường trung trực của đoạn thẳng EF lấy D (D khác I) A chứng minh ∆DIE=∆DIF B Trên tia đối của ID lấy điểm K sao cho ID=IK Chứng minh DE//KF Vẽ cả hình và giải giúp tui vs nha :))
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
Cho tam giác nhọn DEF có DE<DF, tia phân giác của góc DEF cắt DF tại I. Lấy K trên EF sao cho ED=EK.
a) Chứng minh tam giác DEI = tam giác KEI.
b) Gọi H là giao điểm của ED và KI. Chứng minh DH=KF.
(Có hình nữa càng tốt nha các bạn. Thank you very much!)
Cho tam giác DEF có DE<DF. Gọi M là trung điểm của EF. Trên tia đối của tia DM lấy điểm K sao cho MD=MK. a/ Chứng minh tam giác DEM= tam giác KFM.Từ đó chứng minh DE//KF. b/ Kẻ DH vuông góc với EF. Trên tia DH lấy điểm P sao cho HD=HP. Chứng minh EF là tia phân giác của góc DEP
Vẽ hình giúp mình với nhé mình cảm ơn nhiều
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
cho tam giác DEF vuông tại D ( DE<DF ) kẻ DH bằng EF ( H bằng EF ) trên HF lấy I sao cho HI=HE
a) chứng minh tam giác DHE=tam giác DHI
b gọi k là trung điểm của cạnh DE đường thẳng IK cắt DH tại G chứng minh DG= 2 phần 3 DH và EG đi qua trung điểm của DI