Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoa
Xem chi tiết
Nguyễn Vũ Đức Huy
Xem chi tiết
ĐYTNTYĐ
9 tháng 4 2016 lúc 20:48

0 bít đề viết j cả

Nguyễn Trần An Thanh
9 tháng 4 2016 lúc 21:08

Nếu đề là  p(x)=mx+nx+q thì bài lm của mk đây

p(1) = m + n + q

p(-1) = -m - n +q

Vì p(1) = p(-1)  => m + n + q = -m - n + q

=> m + n = -m - n

Có: p(-x) = -mx - nx + q

=(-m-n)x +q

= (m + n)x + q

=mx + nx + q

Vậy p(x) = p(-x)

trang nguyễn
Xem chi tiết
YangSu
21 tháng 1 2023 lúc 18:04

\(a,A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\left(dkxd:x\ne\pm2\right)\)

\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)^2}{x^2-4}\)

Vậy \(A=\dfrac{\left(x+1\right)^2}{x^2-4}\)

\(b,\) Theo đề, ta có : \(-2< x< 2\) 

\(\Rightarrow x-2< 0;x+2>0;\left(x+1\right)^2>0\)

\(\Rightarrow A< 0\) hay phân thức luôn có giá trị âm

 

Đinh Quang Dũng
Xem chi tiết
Đỗ Thị Hải Yến
Xem chi tiết
Nguyễn Thiên Thanh
Xem chi tiết
Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 22:54

a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)

\(=4m^2-8m+4+4m+12\)

\(=4m^2-4m+16\)

\(=\left(2m-1\right)^2+15>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

b: Theo đề, ta có:

\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)

\(\Leftrightarrow4m^2-6m>=0\)

=>m<=0 hoặc m>=3/2

trịnh minh anh
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 15:05

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(-2< x< 2\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2>0\end{matrix}\right.\Leftrightarrow\left(x-2\right)\left(x+2\right)< 0;x\ne-1\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow A< 0\)

Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 15:05

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{x^2-4}\)

Nguyễn Thái Hà
Xem chi tiết