Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Do Dinh Luyen
Xem chi tiết
Trần Nguyễn Xuân Khôi
Xem chi tiết
Nguyễn Minh Anh
7 tháng 1 2022 lúc 20:35

3) \(-12+2x-9+x=0\\ -21+3x=0\\ 3x=21\\ x=7\)

Vân Vui Vẻ
7 tháng 1 2022 lúc 20:42

4)
\(11+\left(15-x\right)=1\)
\(15-x=1-11\)
\(15-x=-10\)
\(x=15-\left(-10\right)\)
\(x=25\)

5) 
\(4-\left(27-3\right)=x-\left(13-4\right)\)
\(4-24=x-9\)
\(x-9=-20\)
\(x=-20+9\)
\(x=-11\)
 

Thanh Hoàng Thanh
7 tháng 1 2022 lúc 20:47

\(3.-12+\left(2x-9\right)+x=0.\)

\(\Leftrightarrow-12+2x-9+x=0.\Leftrightarrow3x=21.\Leftrightarrow x=7.\)

Vậy \(x=7.\)

\(4.11+\left(15-x\right)=1.\Leftrightarrow11+15-x=1.\Leftrightarrow26-x=1.\Leftrightarrow x=25.\)

Vậy \(x=25.\)

\(5.4-\left(27-3\right)=x-\left(13-4\right).\Leftrightarrow4-24=x-9.\Leftrightarrow-20=x-9.\Leftrightarrow x=-11.\)

Vậy \(x=-11.\)

\(6.8-\left(x-10\right)=23-\left(-4+12\right).\Leftrightarrow8-x+10=23-8.\Leftrightarrow18-x=15.\Leftrightarrow x=3.\)

Vậy \(x=3.\)

\(7.105-5\left(10-5x\right)=-20.\Leftrightarrow105-50+25x=-20.\Leftrightarrow25x=-75.\Leftrightarrow x=-3.\)

Vậy \(x=-3.\)

\(8.\left(x-1\right)\left(8-2x\right)\left(3x+123\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\8-2x=0.\\3x+123=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=4.\\x=-41.\end{matrix}\right.\)

Vậy \(x\in\left\{1;4;-41\right\}.\)

\(9.\left(x^2-25\right)\left(x+10\right)=0.\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+10\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0.\\x+5=0.\\x+10=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5.\\x=-5.\\x=-10.\end{matrix}\right.\)

Vậy \(x\in\left\{5;-5;-10\right\}.\)

\(10.x\left(x^2+5\right)=0.\Leftrightarrow x=0.\)

Tường vy Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 12 2021 lúc 22:56

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)

Nguyễn Hà Giang
Xem chi tiết
nguyen linhchi
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 12 2021 lúc 14:02

\(TH_1:x\ge0\Leftrightarrow x^3\ge0\Leftrightarrow VT>0\left(loại\right)\)

\(TH_2:x< 0\)

Với \(x=-1\Leftrightarrow VT=4\cdot9\cdot14\cdot29>0\left(loại\right)\)

Với \(x=-2\Leftrightarrow VT=-3\cdot2\cdot7\cdot23< 0\left(nhận\right)\)

Với \(x=-3\Leftrightarrow VT=-22\left(-17\right)\left(-12\right)\cdot3< 0\left(nhận\right)\)

Với \(x< -4\Leftrightarrow x^3< -64\Leftrightarrow x^3+5< x^3+10< x^3+15< x^3+30< 0\)

Do đó cả 4 thừa số trong tích đều âm nên tích này luôn dương

Vậy \(x\in\left\{-2;-3\right\}\)

hoangtuvi
Xem chi tiết
Tran Nguyen Linh Chi
28 tháng 8 2021 lúc 12:51

i) x3- 11x2 + 30x

=\(x\left(x^2-11x+30\right)\)

=\(x\left(x-6\right)\left(x-5\right)\)

 

 

Tran Nguyen Linh Chi
28 tháng 8 2021 lúc 12:53

j) 4x4- 21x2y2 + y4

=4x^4+4x^2y^2+y^4-25x^2y^2

=(2x^2+y^2)^2-(5xy)^2

=(2x^2+y^2-5xy)(2x^2+y^2+5xy)

Tran Nguyen Linh Chi
28 tháng 8 2021 lúc 12:56

              k,x3 + 4x2- 7x - 10

Dr.STONE
Xem chi tiết
Thanh Hoàng Thanh
18 tháng 1 2022 lúc 12:27

\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)

\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)

\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)

\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)

Ly Bùi
Xem chi tiết
nguyễn kim thương
6 tháng 6 2017 lúc 9:00

1)  \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)

2)  \(x^3-9x^2+6x+16\)

\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)

\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)

3)   \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-1\right)\)

4)  \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)

\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

gửi phần này trước còn lại làm sau !!! tk mk nka !!!

Nguyễn Đức Phương
5 tháng 6 2017 lúc 21:54

nhiều thế

nguyễn kim thương
6 tháng 6 2017 lúc 9:39

6) \(\left(x+y\right)^2-\left(x+y\right)-12\)\(=\left(x+y\right)^2-2\cdot\frac{1}{2}\left(x+y\right)+\frac{1}{4}-\frac{49}{4}\)

\(=\left(x+y-\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)\(=\left(x+y-\frac{1}{2}-\frac{7}{2}\right)\left(x+y-\frac{1}{2}+\frac{7}{2}\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

7)   \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)          (NHÂN x + 2 vs x +  5  và  x + 3 vs x + 4 )

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

ĐẶT   \(x^2+7x+11=y\)   ta được :  

\(\left(y+1\right)\left(y-1\right)-24=y^2-1-24\)

\(=y^2-25=\left(y-5\right)\left(y+5\right)\)

8)  \(4x^4-32x^2+1=4x^4+4x^2+1-36x^2\)

\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)

9) sai đề rùi bạn ơi ! đề đúng nè 

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

Ta thấy :  

\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Thay vào biểu thức bài cho ta được : 

\(3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)

\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)

bài ở trên câu 3 : kết luận là  \(\left(x-3\right)\left(x^2-x-6\right)\)bạn sửa lại giúp mk nka !!! Th@nk !!! Tk Mk vs  

Ha My
Xem chi tiết
Đức Hiếu
6 tháng 6 2017 lúc 7:08

a,\(x^3-7x+6\)

\(=x^3-2x^2+2x^2-4x-3x+6\)

\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(3x-6\right)\)

\(=x^2.\left(x-2\right)+2x.\left(x-2\right)-3.\left(x-2\right)\)

\(=\left(x-2\right).\left(x^2+2x-3\right)\)

\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)

\(=\left(x-2\right).\left[\left(x^2-x\right)+\left(3x-3\right)\right]\)

\(=\left(x-2\right).\left[x.\left(x-1\right)+3.\left(x-1\right)\right]\)

\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)

b,\(x^3-9x^2+6x+16\)

\(=x^3-8x^2-x^2+8x-2x+16\)

\(=\left(x^3-8x^2\right)-\left(x^2-8x\right)-\left(2x-16\right)\)

\(=x^2.\left(x-8\right)-x.\left(x-8\right)-2.\left(x-8\right)\)

\(=\left(x-8\right).\left(x^2-x-2\right)\)

\(=\left(x-8\right).\left(x^2+x-2x-2\right)\)

\(=\left(x-8\right).\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)

\(=\left(x-8\right).\left[x.\left(x+1\right)-2.\left(x+1\right)\right]\)

\(=\left(x-8\right).\left(x+1\right).\left(x-2\right)\)

c,\(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)

\(=x^2.\left(x-5\right)-x.\left(x-5\right)-6.\left(x-5\right)\)

\(=\left(x-5\right).\left(x^2-x-6\right)\)

\(=\left(x-5\right).\left(x^2+2x-3x-6\right)\)

\(=\left(x-5\right).\left[\left(x^2+2x\right)-\left(3x+6\right)\right]\)

\(=\left(x-5\right).\left[x.\left(x+2\right)-3.\left(x+2\right)\right]\)

\(=\left(x-5\right).\left(x+2\right).\left(x-3\right)\)

Chúc bạn học tốt!!!

Đức Hiếu
6 tháng 6 2017 lúc 7:26

d,\(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2.\left(2x+1\right)-x.\left(2x+1\right)+3.\left(2x+1\right)\)

\(=\left(2x+1\right).\left(x^2-x+3\right)\)

e, \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(27x^2-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)

\(=9x^2.\left(3x-1\right)-6x.\left(3x-1\right)+4.\left(3x-1\right)\)

\(=\left(3x-1\right).\left(9x^2-6x+4\right)\)

Chúc bạn học tốt!!!

Đức Hiếu
6 tháng 6 2017 lúc 7:44

7, \(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)

\(=\left[\left(x+2\right).\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)

\(=\left(x^2+5x+2x+10\right).\left(x^2+4x+3x+12\right)-24\)

\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)(1)

Đặt \(t=x^2+7x+10\Rightarrow t+2=x^2+7x+12\)

\(\Rightarrow\left(1\right)=t.\left(t+2\right)-24\)

\(=t^2+2t-24=t^2-4t+6t-24\)

\(=\left(t^2-4t\right)+\left(6t-24\right)=t.\left(t-4\right)+6.\left(t-4\right)\)

\(=\left(t-4\right).\left(t+6\right)\) (2)

\(t=x^2+7x+10\) nên:

(2) \(=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right).\left(x^2+7x+16\right)\)

\(=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)

\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)

\(=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)

Chúc bạn học tốt!!!

Nguyệt Huyết Hắc Bạch
Xem chi tiết
Lê Song Phương
29 tháng 8 2023 lúc 7:04

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)