tìm Max A=(5x^2+4x-1)/x^2
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$
1. Tìm max hoặc min:
a. A = x^2 - 5x - 1
b. B = 1/4x - x + 5.
c. C = x^2 - 4xy + 7y^2 - 2y +3
d. D = 5x^2 - xy + 1/24y^2 + 2x - 1
e. E = x^2 - 3xy + y - 2y - 1
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 ).( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
b. 1/16x^2 - ( 3x + 5 ) = 0
c. 4.( x - 3 ) - ( x + 2 ) = 0
1/Tìm Max B= 5-x2+2x-4y2-4
2/ Tìm x bít x3+5x2-4x-20=0
Tìm MAX của
a) 5/4x^2-4x+21 b) 1/5x^2+10x+2018
c) -4x^2+4x/15 d)* -x^2+4x-1/x^2
Cố gắng giải hộ mình với nhé :)
\(\frac{5}{4x^2-4x+21}=\frac{5}{4x^2-2x-2x+1+20}=\frac{5}{\left(2x-1\right)^2+20}\)
\(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+20\ge20\)
dấu = xảy ra khi (2x-1)2=0
=> \(x=\frac{1}{2}\)
Vậy max \(\frac{5}{4x^2-4x+21}=\frac{5}{20}=\frac{1}{4}\)
Tìm Min hoặc Max
a, A=\(5x^2-6x-1\)
b,B=\(x^2+y^2+2xy+4x+4y\)
a) \(A=5x^2-6x-1\)
\(\Rightarrow A=5\left(x^2-\frac{6}{5}x-\frac{1}{5}\right)\)
\(\Rightarrow A=5\left(x^2-2\cdot x\cdot\frac{6}{10}+\frac{36}{100}-\frac{14}{25}\right)\)
\(\Rightarrow A=5\left[\left(x-\frac{6}{10}\right)^2-\frac{14}{25}\right]\)
\(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\)
Vì \(\left(x-\frac{6}{10}\right)^2\ge0\forall x\)\(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\ge-\frac{14}{5}\forall x\)
\(A=-\frac{14}{5}\Leftrightarrow\left(x-\frac{6}{10}\right)^2=0\Leftrightarrow x=\frac{6}{10}\)
Vậy \(MinA=-\frac{14}{5}\Leftrightarrow x=\frac{6}{10}\)
\(x^2+y^2+2xy+4x+4y\)
\(=\left(x+y\right)^2+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+4\right)\)
Trần Minh Hoàng
Đề bảo tìm Min hoặc Max mà bn
1. Tìm max, min:
a. A = x^2 - 5x - 1
b. B = 1/4x - x + 5.
c. C = x^2 - 4xy + 7y^2 - 2y +3
d. D = 5x^2 - xy + 1/24y^2 + 2x - 1
e. E = x^2 - 3xy + y - 2y - 1
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 ).( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
b. 1/16x^2 - ( 3x + 5 ) = 0
c. 4.( x - 3 ) - ( x + 2 ) = 0
Cảm phiền mọi người ghi rõ cách tính luôn.
Bài 1:
a. A = x^2 - 5x - 1
\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)
\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)
Dấu = khi x=5/2
Vậy MinC=-29/4 khi x=5/2
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
=>4x2-12x+9+1-16x2=-14x2+13x-3
=>-12x2-12x+10=-14x2+13x-3
=>2x2-25x+13=0
\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)
\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)
\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)
\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)
c. 4.( x - 3 ) - ( x + 2 ) = 0
=>4x-12-x-2=0
=>3x-14=0
=>3x=14
=>x=14/3
Tìm Max
a, -x2 -x +2
b, -4x2 -5x +1
c, -9x2 + 24x +6
d, -2x2 +x +3
a)\(-x^2-x+2\)
\(=-\left(x^2+x-2\right)\)
\(=-\left(x^2+x+\frac{1}{4}-\frac{7}{4}\right)\)
\(=-\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\le\frac{7}{4}.Với\forall x\in Z\)
Dấu "=" xảy ra khi
\(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy Max = 7/4 <=> x = -1/2
a, \(-\left(x^2+x\right)+2\)
=\(-\left(x^2+2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)+2\)
=\(-\left(x+\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Dấu = xảy ra khi : \(x+\frac{1}{2}=0\)
=> \(x=-\frac{1}{2}\)
Vậy Max=9/4 khi x=-1/2
Các câu khác tương tự nhé.
Tìm Max
a, -x2 -x +2
b, -4x2 -5x +1
c, -9x2 + 24x +6
d, -2x2 +x +3
Tìm Max
A= -5x2-4x+1
B= 2x+1/x2+2
A=1-[(√5x)^2+2.2(√5.x)/√5+4/5]+4/5
A=9/5-(√5x+2/√5)^2<=9/5
GtlnA=9/5 khi x=-2/5
a) A = -5x2 - 4x + 1
A = -5( x2 + 2.\(\dfrac{2}{5}\)x + \(\dfrac{4}{25}-\dfrac{4}{25}\)) + 1
A = -5\(\left(x+\dfrac{2}{5}\right)^2\)+ \(\dfrac{4}{5}+1\)
A = -5\(\left(x+\dfrac{2}{5}\right)^2\) + \(\dfrac{9}{5}\)
Do : -5\(\left(x+\dfrac{2}{5}\right)^2\) ≥ 0 ∀x
⇒ -5\(\left(x+\dfrac{2}{5}\right)^2\) + \(\dfrac{9}{5}\) ≥ \(\dfrac{9}{5}\)
⇒ AMAX = \(\dfrac{9}{5}\) ⇔ x = \(\dfrac{-2}{5}\)
b) B = \(\dfrac{2x+1}{x^2+2}\)
B = \(\dfrac{x^2+2-x^2+2x-1}{x^2+2}\)
B = \(\dfrac{x^2+2}{x^2+2}-\dfrac{\left(x-1\right)^2}{x^2+2}\)
B = 1 - \(\dfrac{\left(x-1\right)^2}{x^2+2}\)
Do : - \(\dfrac{\left(x-1\right)^2}{x^2+2}\) ≤ 0 ∀x
⇒ 1 - \(\dfrac{\left(x-1\right)^2}{x^2+2}\) ≤ 1
⇒ BMax = 1 ⇔ x = 1