Tìm tất cả các số nguyên tố P để P cộng 10 và Phục cộng 14 đều là số nguyên tố.
tìm tất cả các số nguyên tố để các số sau đều là số nguyên tố
a) P + 10 và P + 14
b) P + 2 và P + 6 và P + 18 (chỉ ra 2 giá trị của P)
cho cách làm
b, Nếu p= 2 thì p+2= 2+2=4 chia hết cho 2 →là hợp số ( loại )
Nếu p= 3 thì p+6= 3+6=9 chia hết cho 3 →là hợp số ( loại )
Nếu p= 4 thì p+18= 4+18=22 chia hết cho 22 →là hợp số ( loại )
Nếu p=5 thì \(\left[\begin{array}{nghiempt}p+2=5+2=7\\p+6=5+6=11\\p+18=5+18=23\end{array}\right.\) ↔ Là số nguyên tố
Vì p có 2 giá trị cần tìm nên ta tiếp tục tìm kiếm nha bn
Nếu p=6 thì p+2= 6+2 =8 chia hết cho 2 →là hợp số ( loại )
Nếu p=7 thì p+2=7+2=9 chia hết cho 3 →là hợp số ( loại )
Nếu p=8 thì p+2= 8+2=10 chia hết cho2 →là hợp số ( loại )
Nếu p=9 thì p+6=9+6=15 chia hết cho 5 →là hợp số ( loại )
Nếu p=10thì p+6=10+6=16 chia hết cho 2 →là hợp số ( loại )
Nếu p=11 thì \(\left[\begin{array}{nghiempt}p+2=11+2=13\\p+6=11+6=17\\p+18=11+18=29\end{array}\right.\) → là SNT
Vậy có 2 giá trị p= 5 và p= 11
+ Nếu p=2 thì p+10 = 2+10 = 12 chia hết cho 2 →là hợp số (loại)
+ Nếu p=3 thì p+10= 3+ 10 =13 → là số nguyên tố
......................p+14 = 3+14=17 → là số nguyên tố
** Nếu p > 3 thì p sẽ có dạng 3k + 1 và 3k+2
* Nếu p= 3k+1 thì p+14= 3k+1+14=3k+15 chia hết cho 3→là hợp số (loại)
Nếu p= 3k+2 thì p+10= 3k+2+10=3k+12 chia hết cho 3 →là hợp số (loại)
Vậy có 1 và chỉ cí 1 giá trị p=3
1.Tìm tất cả các số nguyên tố p để 2^p+p^2 là số nguyên tố
2.Cho p là số nguyên tố và 8p-1 cũng là số nguyên tố.CMR 8p+1 là số nguyên tố
1. Tìm n thuộc N để(n+3)(n+4)là một số chính phương
2. Tìm số nguyên tố p để
a)p+10 và p+20 đều là số nguyên tố
b)p+2 và p+94 đều là số nguyên tố
c)p+6;p+8;p+12;p+14 đều là số nguyên tố
3. Cho p1 bé hơn p2 là hai số nguyên tố lẻ liên tiếp
CMR:(p1+p2) :2 là hợp số
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
Tìm tất cả các số nguyên tố thỏa mãn sa cho p2+14 cũng là số nguyên tố.
chứng minh rằng :8p-1 là số nguyên tố thì 8p+1 là hợp số
tìm p;q là số nguyên tố sao cho 7p+qvaf pq+11 đều là số nguyên tố
tìm các số nguyên tố a,b,c sao cho: 2a+3b+6c=78
tìm số nguyên tơố p sao cho các số sau đều là số nguyên tố:
a)p+2 và p+10
b) p+10 và p+20
Bài 6 : Tìm số nguyên tố p sao cho :
a, p + 10 và p + 14 cũng đều là các số nguyên tố .
b, p + 2 , p + 6 , p + 8 và p + 14 cũng là các số nguyên tố
- Vì sao ?
a)
p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
b)
p=2=>6+p=6+2=8 là hợp số=>loại p = 2
p=3
=>6+p=6+3=9 là hợp số =? loại p=3
p=5
=>p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+14=5+14=19
đều là snt => p =5 thỏa mãn
nếu p>5
=>p có dạng :
p=5k+1
=>p+14=5k+1+14=5k+15 =5k+5.3=5(k+3) chia hết cho 5 là hợp số => loại p=5k+1
p=5k+2
=>p+8=5k+2+8=5k+10=5k+2.5=5(k+2) chia hết cho 5 là hợp số => loại p=5k+2
Vậy p=5
tìm số nguyên tố p để p+6; p+8; p+12; p+14 đều là các số nguyên tố
Xét p = 2 => p + 6 = 2 + 6 = 8 ( hợp số ) ko thỏa mãn
Xét p = 3 => p + 6 = 3 + 6 = 6 ( hợp số ) ko thỏa mãn
Xét p = 5 => p + 6 = 5 + 6 = 11 ( thỏa mãn )
p + 8 = 5 + 8 = 13 ( thỏa mãn )
p + 12 = 5 + 12 = 17 ( thỏa mãn)
p + 14 = 5 + 14 = 19 ( thỏa mãn )
Xét p > 5 => p = 5k + 1 ; p = 5k + 2 ; p = 5k + 3 ; p =5k + 4
Với p = 5k + 1 => p + 14 = 5k + 15 = 5 ( k + 3 ) chia hết cho 5 ( ko thỏa mãn )
Với p = 5k + 2 => p + 8 = 5k + 10 = 5 ( k + 2 ) chia hết cho 5 ( ko thỏa mãn )
Với p = 5k + 3 => p + 12 = 5k + 15 = 5 ( k + 3 ) chia hết cho 5 (ko thỏa mãn )
Với p = 5k + 4 => p + 6 = 5k + 10 = 5 (k + 2 ) chia hết cho 5 (ko thỏa mãn )
Vậy với p = 5 thì ta có p + 6, p + 8, p+12, p+ 14 là số nguyên tố
MỎI TAY QUÁ PHẢI BẤM CHO MÌNH ĐẤY !
Tìm tất cả các số tự nhiên n để 3n+18 là số nguyên tố
+)n=0 =>3n+18=30+18=1+18=19 là số nguyên tố( thỏa mãn)
+)n khác 0 =>3n chia hết cho 3,18 chia hết cho 3=>3n+18 chia hết cho 3
Ta có 3n+18>3
Số 3n+18 là hợp số vì có 3 ước là 1,3 và chính nó ( loại)
Vậy n=0 thì 3n+18 là số nguyên tố
Tick nhé
Với \(n=0\Rightarrow3^0+18=19\in P\)
Với \(n\ge1\Rightarrow3^n\text{⋮}3\)
Mà \(18\text{⋮}3\)
\(\Rightarrow3^n+18\text{⋮}3\) (không là số n guyen tố)
Vậy n=0
TH1: n=0 =>3n+18=30+18=19 là số nguyên tố
TH2: n >= 1
Ta thấy 3n chia hết cho 3 ; 18 chia hết cho 3 =>3n+18 chia hết cho 3
Mà 3n+18 khác 3 (n>=1) nên TH2 3n+18 không phải là số nguyên tố
Vậy n=0
Tìm tất cả các số nguyên tố p vừa là tổng vừa là hiệu của hai số nguyên tố
Số nguyên tố p ko thể là 2 vì ko có 2 số nguyên tố nào có tổng là2
=> p là số lẻ
Mà p là tổng 2 số nt và cũng là hiêu 2 số nt
Do đó: p=a+2 p=b-2[a;b thuộc P]
TA thấy p-2 ;p; p+2 là 3 số lẻ liên tiếp nên 1 trong 3 số luôn chia hết cho 3
Mà cả 3 số này đều là số nguyên tố nên 1 trong 3 số là số 3
Nếu a=3 thì p=5;b=7[chọn]
Nếu b=3 thì p=1[loại]
Nếu p=3 thì a=1[loại]
Vậy số nguyên tố p cần tìm là 5
mà cả 3 số đều là số nguyên tố nên 1 trong 3 số là sô 3