Tính bằng cách thuận tiện:
A= 2/2018*2020 + 2021/2020 - 2019/2018
So sánh A=\(\dfrac{2018}{2019}\)+\(\dfrac{2019}{2020}\)+\(\dfrac{2020}{2021}\)+\(\dfrac{2021}{2018}\)với 4
Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$
$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$
$> 4+0+0+0+0=4$
so sánh: 2018^2019+1/2018^2020+1 và 2018^2020+1/2018^2021+1
2018^2019+1/2018^2020+1 bé hơn 2018^2020+1/2018^2021+1
A= 2/2018*2020 + 2021/2020 - 2019/2018
giup em voi
Trả lời:
\(A=\frac{2}{2018.2020}+\frac{2021}{2020}-\frac{2020}{2019}\)
\(A=\frac{1}{2018}-\frac{1}{2020}+1+\frac{1}{2020}-\left(1+\frac{1}{2018}\right)\)
\(A=\frac{1}{2018}-\frac{1}{2020}+1+\frac{1}{2020}-1-\frac{1}{2018}\)
\(A=0\)
\(A=\frac{2}{2018}\cdot2020+\frac{2021}{2020}-\frac{2019}{2018}\)
\(A=\frac{2\cdot2020-2019}{2018}+\frac{2021}{2020}\)
\(A=\frac{2021}{2018}+\frac{2021}{2020}\)
\(A=\frac{2021\cdot\left(2020+2018\right)}{2018\cdot2020}=\frac{2021\cdot4038}{2018\cdot2020}=\frac{2021\cdot2019\cdot2}{2018\cdot1010\cdot2}=\frac{2020^2-1}{2018\cdot101\cdot10}\)
\(A=\frac{4080399}{20200180}\)
em biết câu trả lời roi
biến 2/2018*2020 thành 1/2018 và 1/2020
(2021/2020-1/2020) - (2019/2020-1/2018)
=2020/2020 - 2018/2018
= 1-1=0
em phải lên mãi nhà cô giáo để hỏi
2021/2022 + 2020/2021 + 2019/2020 + 2018/2019 + 2017/2018 rôì so sánh với 5
A = 2021/2022+2020/2021+2019/2020+2018/2019+2017/2018
A<2022/2022+2021/2021+2020/2020+2019/2019+2018/2018
A<1+1+1+1+1
A<5
Cho x = 2020, tính giá trị:
P(x) = x^2021-2021x^2020+2021x^2019-2021x^2018+...+2021x-2020
x=2020 nên x+1=2021
\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)
\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)
=x-2020=0
So sánh 2018/2019 + 2019/2020 + 2020/2021:3
Bằng nhau
Ht cho mik
A=2017/2018+2020/2019
B=2018/2019+2021/2020
So sánh A và B
Xét 2017 /2018 và 2018/2019
1-2017/2018=1/2018
1-2018/2019=1/2019
mà 1/2018>1/2019=>2017/2018<2018/2019
Tương tự có:2020/2019>2021/2020
=>2017/2018+2010/2019<2018/2019+2021/2020
2021/2018 x 2022 ... ... ... 2019/2020 x 2020
Bài tập: So Sánh
M= \(\frac{2018}{2019}\)+\(\frac{2019}{2020}\)+\(\frac{2020}{2021}\)
N=\(\frac{2018+2019+2020}{2019+2020+2021}\)
Ta có :
\(N=\frac{2018+2019+2020}{2019+2020+2021}\)
\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Leftrightarrow M>N\)
Trả lời:
Ta có:
\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)
hay \(M>N\)
Vậy \(M>N\)
Ta có :
N = \(\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow M>N\)