cho x+y=2.Chứng minh rằng: x2017 +y2017 < x2018 + y2018
Cmr nếu x/y=z/t thì [(x-y)/(z-t)]2017=(x2017+y2017)/(z2017+t2017)
x2019-2019.x2018+2019.x2018+2019.x2017-2019.x2016+......2019.x-200
Tại x=2018
Giúp mik vs nhé mai mik học rồi
x2019-2019.x2018+2019.x2018+2019.x2017-2019.x2016+......2019.x-200
Tại x=2018
Giúp mik vs nhé
\(\frac{^{x1}}{x2}\)=\(\frac{x3}{x2}\)=\(\frac{x3}{x4}\)=....................................=\(\frac{x2017}{x2018}\)
va \(\frac{a1}{a2018}\)= \(^{5^{ }2017}\)
biet \(x2+x3+x4+......................+x2018\ne0\)
tinh S=\(\frac{x1+x2+x3+.....................+x2017}{x2+x3+x4+.....................+x2018}\)
Bài 10*. Chứng minh rằng các đa thức sau đây không có nghiệm:
a) f(x) = x2 + 4x + 10 c) f(x) = 5x4 + x2 +
b) g(x) = x2 - 2x + 2017 d) g(x) = 4x2004 + x2018 + 1
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
chứng minh rằng phương trình (m2+m+4)x2017 -2x+1=0 luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m
Đặt \(f\left(x\right)=\left(m^2+m+4\right)x^{2017}-2x+1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=1>0\)
\(m^2+m+4=\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
\(\Rightarrow\lim\limits_{x\rightarrow-\infty}\left[\left(m^2+m+4\right)x^{2017}-2x+1\right]=\lim\limits_{x\rightarrow-\infty}x^{2017}\left[\left(m^2+m+4\right)-\dfrac{2}{x^{2016}}+\dfrac{1}{x^{2017}}\right]=-\infty< 0\)
\(\Rightarrow\) Luôn tồn tại 1 số âm \(a< 0\) sao cho \(f\left(a\right)< 0\)
\(\Rightarrow f\left(a\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(a;0\right)\)
Hay pt đã cho luôn có ít nhất 1 nghiệm âm với mọi m
Cho x / 2014 = y / 2015 = z / 1016 Chứng minh rằng 4(x - y) . (y - z) = (z - x)^2
Cho x / y = y / z Chứng minh rằng x^2 + y^2 / y^2 + x^2 = x / z
bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx
Cho M=(1/1+1/2+1/3+...+1/2018)x2x3x4x..x2018)
Chứng minh M chia hết cho 2019.
(Ai thi Toán rồi thì câu này hơi bị quen à nha)
M= ( 1/1+1/2+1/3+...+1/2018).(673.3).2.4.5....2018
M= (1/1+1/2+1/3+...+1/2018).2019.2.4.5...2018
vi bieu thuc tren co so 2019
=> M chia het cho 2019
Cho các số x, y thỏa mãn điều kiện:
2x\(^2\) + 10y\(^2\) – 6xy – 6x – 2y + 10 = 0
Hãy tính giá trị của biểu thức: A = [(x + y – 4)2018 – y2018] : x
\(2x^2+10y^2-6xy-6x-2y+10=0\)
\(\Leftrightarrow x^2-6xy+9y^2+x^2-6x+9+y^2-2y+1=0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x-3=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy \(A=\dfrac{\left(x+y-4\right)^{2018}-y^{2018}}{x}=\dfrac{0^{2018}-1^{2018}}{3}=-\dfrac{1}{3}\)
cho x1x2=x2x3=x3x4...=x2016x2017x1x2=x2x3=x3x4...=x2016x2017
chứng minh: (x1+x2+x3+...+x2016x2+x3+x4+...+x2017)2016=x1x2017(x1+x2+x3+...+x2016x2+x3+x4+...+x2017)2016=x1x2017