tính giá trị nhỏ nhất của a- căn a -2=2
tìm giá trị nhỏ nhất,giá trị lớn nhất của các biểu thức:
a A=căn( x-2)+căn(6-x)
b B=2x+căn(5-x^2)
c C=căn(1+x)+căn(8-x)
d D=2căn(x+5)+căn(1-2x)
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
A= x+1- (2x-2 căn x)/(căn x-1) + (x căn x+1)/ (x- căn x +1) rut gọn, tìm giá trị nhỏ nhất của A
cho A= (1/1- căn x + 1/1 + căn x) : (1/1- căn x -1/ 1+ căn x) + 1/1- căn x
a) tìm dkxd và rút gọn A
b. tính giá trị của A khi x= 7+ 4 căn 3
c. với giá trị nào của x thì A đạt giá trị nhỏ nhất
a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)
\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)
\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)
b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)
\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)
1. Tìm giá trị nhỏ nhất của biểu thức
a) A= căn x -3
b) B= căn x-1 + 2
c) C= -2 +3 . căn x+1
2. Tìm giá trị lớn nhất của biểu thức
a)A= - căn x+1 +5
b)B= 3 - căn x2 -25
Cho a,b là 2 số thực dương. Tìm giá trị nhỏ nhất của biểu thức (a+b)/[căn(a(3a+b))+căn(b(3b+a))]
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
tìm giá trị nhỏ nhất của
A = căn (x^2 -6x +2y^2 +4y +11 ) + căn (x^2 +2x +3y^2 +6y +4)
cho 2 số a, b là 2 số dương biết: a+b =2 căn 2
tính giá trị nhỏ nhất của biểu thức P=1/a +1/b
giúp dùm mình với cảm ơn các bạn
Áp dụng BĐT sờ vác sơ,ta có:
\(P\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Dấu "="xảy ra khi \(a=b=\sqrt{2}\)
Ngoài ra bạn có thể dùng BCS,BĐT phụ 1/x+1/y>=4/x+y,...
Với a, b >0. áp dụng bđt Cô si ta có :
\(a+b\ge2\sqrt{ab}\left(1\right)\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\left(2\right)\)
Nhân vế với vế của (1) và (2) ta được : \(\left(a+b\right).\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
=> \(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Vậy Pmin =\(\sqrt{2}\)khi a = b = \(\sqrt{2}\)
giúp mk vs ạ, mk cần gấp:
Bài 1:Tính giá trị lớn nhất, nhỏ nhất ( nếu có ) của các biểu thức sau:
a, A= (x-4)2+2
b, B=2+căn 2x2+1chia tất cả cho 3
c, 12-x2
Bài 2:Tìm các giá trị nguyên của biến x để:
A=8-x chia cho x-3 có giá trị nhỏ nhất
Cho biểu thức M= x-3/căn(x-1) -căn (2)
tìm giá trị của x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó