(32017+32016-32015).:11
Tìm số tự nhiên x thỏa mãn 5.x−(32021−32019):32017=275.x−(32021−32019):32017=27.
Đáp số: x = .
Cho x1−12017=x2−22016=x3−32016=...=x2017−20171x1−12017=x2−22016=x3−32016=...=x2017−20171 và x1+x2+...+x2017=2017.2018
Tìm x1,x2,...,x2017?
Cho x1−12017=x2−22016=x3−32016=...=x2017−20171x1−12017=x2−22016=x3−32016=...=x2017−20171 và x1+x2+...+x2017=2017.2018
Tìm x1,x2,...,x2017?
Tính tổng S = 3 2015 . C 2015 0 - 3 2014 C 2015 2 + 3 2013 C 2015 2 - … + 3 C 2015 2014 - C 2015 2015
A. 2 2015
B. - 2 2015
C. 3 2015
D. 4 2015
Theo nhị thức Newton ta có:
( 3 + x ) 2015 = C 2015 0 . 3 2015 + C 2015 1 .3 2014 . x + C 2015 2 .3 2013 . x 2 + .... + C 2015 2014 .3. x 2014 + C 2015 2015 . x 2015
Thay x = -1 ta được:
( 3 − 1 ) 2015 = C 2015 0 . 3 2015 − C 2015 1 .3 2014 + C 2015 2 .3 2013 − .... + C 2015 2014 .3 − C 2015 2015
Suy ra, S = 2 2015
Ta chọn đáp án A
Tính tổng sau
B = 1 + 31 + 32 + ... + 32016
\(B=1+3^1+3^2+...+3^{2016}\)
\(3B=3+3^2+3^3+3^4+...+3^{2017}\)
\(3B-B=3^{2017}-1\)
\(B=\dfrac{3^{2017}-1}{2}\)
Tính tổng sau
B = 1 + 31 + 32 + ... + 32016
\(B=1+3^1+3^2+...+3^{2016}\)
\(3\cdot B=3+3^2+3^3+...+3^{2016}+3^{2017}\)
\(3B-B=3+3^2+3^3+...+3^{2016}+3^{2017}-\left(1+3^1+3^2+...+3^{2016}\right)\)
\(2B=3^{2017}-1\)
\(\Rightarrow B=\dfrac{3^{2017}-1}{2}\)
Tính tổng sau
B = 1 + 3 + 32 + ... + 32016
\(B=1+3+3^2+...+3^{2016}\)
\(3\cdot B=3+3^2+3^3+...+3^{2017}\)
\(3B-B=3+3^2+3^3+...+3^{2017}-\left(1+3+3^2+...+3^{2016}\right)\)
\(2B=3^{2017}-1\)
\(\Rightarrow B=\dfrac{3^{2017}-1}{2}\)
42016 x 3 - 32017
Huy Rio ơi đơn vị bạn tính sai rùi đáp án là 94031 mới đúng
choA=31+32+33+...32015.Tìm n biết 2A+3=3n
\(A=3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)
\(\Rightarrow3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)
Giải bất phương trình sau: 2 x − 5 2013 + x − 2 1007 ≤ 2 x − 3 2015 + x − 1 1008