Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thùy Dương
Xem chi tiết
Luna đáng iu không quạu...
23 tháng 1 2021 lúc 15:41

Trường hợp 1: x - 1 ≥ 0 → x ≥ 1

→ x - 1 = 2x - 5

→ x - 2x = -5 + 1

 - x = - 4

→ x = 4

Trường hợp 2: x - 1 ≤ 1 → x ≤ 1

→ - ( x - 1) = 2x - 5

→ - x + 1 = 2x - 5

 -x - 2x = -5 - 1

→  -3x = 6

→  x = 2 (loại)

Vậy, x = 4

 

 

 

Sonyeondan Bangtan
Xem chi tiết
Phong Thế
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 6:31

a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)

Khai triển \(\left(2-3x^2+x^3\right)^5\)

\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)

Hệ số của số hạng chứa \(x^9\):

\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)

b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)

Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_5^4+C_5^3+...+C_{22}^3\)

\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)

Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)

Khách vãng lai đã xóa
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 6:44

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

Khách vãng lai đã xóa
Hàn Nhật Hạ
Xem chi tiết
thi anh
Xem chi tiết
Lê Thị Thục Hiền
6 tháng 7 2021 lúc 15:11

\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\3x+my=5\end{matrix}\right.\)

\(\Rightarrow3x+m\left(mx-2\right)=5\)

\(\Leftrightarrow x\left(3+m^2\right)=5+2m\)

\(\Leftrightarrow x=\dfrac{5+2m}{3+m^2}\Rightarrow y=\)\(\dfrac{m\left(5+2m\right)}{3+m^2}-2=\dfrac{5m-6}{3+m^2}\)

Suy ra với mọi m thì hệ luôn có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{5+2m}{3+m^2};\dfrac{5m-6}{3+m^2}\right)\)

Có \(x+y=0\Leftrightarrow\dfrac{5+2m}{3+m^2}+\dfrac{5m-6}{3+m^2}=0\)\(\Rightarrow m=\dfrac{1}{7}\)

Vậy ...

Quách Minh Hương
Xem chi tiết
Tố Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 19:07

F(2)+F(1)=8

=>\(2^2\left(m^2+1\right)+2\left(m^2+1\right)-5+m^2+1+2\left(m^2+1\right)-5=8\)

=>\(8\left(m^2+1\right)+m^2+1-10=8\)

=>\(9\left(m^2+1\right)=18\)

=>\(m^2+1=2\)

=>\(m^2=1\)

=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2024 lúc 20:32

Để (d)//(d') thì \(\left\{{}\begin{matrix}3-m=2\\m-5\ne3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=1\\m\ne8\end{matrix}\right.\)

=>m=1

=>(d): y=(3-1)x+1-5=2x-4

Ta có: (d): y=2x-4; (d'): y=2x+3

Lấy A(3;2) thuộc (d)

=>KHoảng cách từ (d) đến (d') sẽ là khoảng cách từ A đến (d')

(d'): y=2x+3

=>2x-y+3=0

Khoảng cách từ A đến (d') là:

\(\dfrac{\left|2\cdot3+\left(-1\right)\cdot2+3\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{7}{\sqrt{5}}=\dfrac{7\sqrt{5}}{5}\)

=>\(d\left(\left(d\right);\left(d'\right)\right)=\dfrac{7\sqrt{5}}{5}\)