1/3+2/3^2+3/^3+4/3^4+...+2022/3^2022
2023-1/2*(1+2)-1/3*(1+2+3)-1/4*(1+2+3+4)-...-1/2022*(1+2+3+4+...+2022)
Ta có: \(2023-\frac12\left(1+2\right)-\frac13\left(1+2+3\right)-\cdots-\frac{1}{2022}\left(1+2+\cdots+2022\right)\)
\(=2023-\frac12\cdot\frac{2\cdot3}{2}-\frac13\cdot\frac{3\cdot4}{2}-\cdots-\frac{1}{2022}\cdot\frac{2022\cdot2023}{2}\)
\(=2023-\frac32-\frac42-\cdots-\frac{2023}{2}=2023-\frac12\left(3+4+\cdots+2023\right)\)
\(=2023-\frac12\frac{\left(2023-3+1\right)\left(2023+3\right)}{2}=2023-\frac12\cdot\frac{2021\cdot2026}{2}=2023-\frac12\cdot2021\cdot1013\)
=-1021613,5
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
bạn không nên gửi những thứ linh tinh này vào olm nhé. Có người bị ám cả đời vì đọc rồi đấy
Ta có; \(B=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2021}{3^{2021}}-\frac{2022}{3^{2022}}\)
=>\(3B=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\ldots+\frac{2021}{3^{2020}}-\frac{2022}{3^{2021}}\)
=>\(3B+B=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{2021}{3^{2020}}-\frac{2022}{3^{2021}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2021}{3^{2021}}-\frac{2022}{3^{2022}}\)
=>\(4B=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2021}}-\frac{2022}{3^{2022}}\)
Đặt \(A=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2021}}\)
=>\(3A=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{2020}}\)
=>\(3A+A=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{2020}}-\frac13+\frac{1}{3^2}+\cdots-\frac{1}{3^{2021}}\)
=>\(4A=-1-\frac{1}{3^{2021}}=\frac{-3^{2021}-1}{3^{2021}}\)
=>\(A=\frac{-3^{2021}-1}{4\cdot3^{2021}}\)
Ta có: \(4B=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2021}}-\frac{2022}{3^{2022}}\)
\(=1+\frac{-3^{2021}-1}{4\cdot3^{2021}}-\frac{2022}{3^{2022}}=1+\frac{-3^{2022}-3}{4\cdot3^{2022}}-\frac{8088}{4\cdot3^{2022}}\)
=>\(4B=1+\frac{-3^{2022}-8091}{4\cdot3^{2022}}=1-\frac14-\frac{8091}{4\cdot3^{2022}}<\frac34\)
=>\(B<\frac{3}{16}\)
cho tổng
M = 1/3+ 2/3^2+3/3^3+.....+ 2022/3^2022+ 2023/3^2023
So sánh M với 3/4
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
cho A=1+2022+2022^2+2022^3 +2022^4+...+2022^2016 + 2022^2017
và B= 2022^2018-1 . so sánh A và B
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
\(\text{cho M = 1 2 3 + 2 3 3 + 3 4 3 + . . . + 2021 2022 3 + 2022 2023 3 . Chứng tỏ rằng giá trị của M không phải là một số tự nhiên}\)
A= 1 - 2 - 22 - 23 + 24 +...+ 22022 (sửa đề)
= -13 + (24 + 25 + 26 + ... + 22022)
2A = -26 + (25 + 26 + 27 + ... + 22023)
2A - A = -26 + (25 + 26 + 27 + ... + 22023) - [-13 + (24 + 25 + 26 + ... + 22022)]
A = -13 +(22023 - 24)
= 22023 - 29
Vậy...
B = 1 + 3 + 32 + 33 + 34 + ... + 32022
3B = 3 + 32 + 33 + 34 + 35 +...+ 32023
3B - B = 3 + 32 + 33 + 34 + 35 +...+ 32023 - (1 + 3 + 32 + 33 + 34 + ... + 32022)
2B = 32023 - 1
=> B = \(\dfrac{3^{2023}-1}{2}\)
Vậy...
#Ayumu
2/3^3+3/4^3+4/5^3+...+2021/2022^3+2022/2023^3 Chứng tỏ rằng giá trị này không phải là số tự nhiên
Để chứng tỏ rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên, chúng ta có thể sử dụng phương pháp giả sử đối chứng.
Giả sử rằng dãy giá trị này là số tự nhiên, tức là tất cả các phần tử trong dãy đều là các số tự nhiên. Ta xem xét phần tử cuối cùng của dãy, tức là 2022/2023^3.
Nếu 2022/2023^3 là số tự nhiên, thì 2022/2023^3 + 1 cũng phải là số tự nhiên.
Tuy nhiên, nếu ta tính giá trị của biểu thức 2022/2023^3 + 1,
ta sẽ có: 2022/2023^3 + 1 = (2022 + 2023^3) / 2023^3
Với các giá trị số học, ta biết rằng tỷ số của hai số nguyên không thể tạo ra một số nguyên khác. Do đó, biểu thức trên không thể là số tự nhiên.
Vậy, ta có thể kết luận rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên.
1+3^2+3^4+3^6+...+3^2022