Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Đức Bách
Xem chi tiết
Đặng Đức Bách
Xem chi tiết
phanvan duc
Xem chi tiết
Nguyen Dung Minh
Xem chi tiết
Nguyen Dung Minh
18 tháng 12 2017 lúc 21:01

Nhanh lên nhé

Nguyệt Hà
Xem chi tiết
Nguyễn Văn A
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2023 lúc 17:40

Do các số nguyên dương là phân biệt nên tổng 3 số bất kì bao giờ cũng lớn hơn 3

Xét số dư trong phép chia các số này cho 3. Nếu các số dư là 0;1;2 đều xuất hiện thì ta lấy 3 số tương ứng, ta sẽ được tổng 3 số chia hết cho 3

=>LOại

Nếu có 1 số dư nào đó không xuất hiện thì có 5 số và chỉ có nhiều nhất 2 số dư

=>Suy ra tồn tại 3 số có cùng số dư

=>Ba số này có tổng chia hết cho 3

=>ĐPCM

Trần Thị Trà My
Xem chi tiết
Kudo Shinichi
12 tháng 7 2017 lúc 21:48

Khi chia 1 số tự nhiên cho 3 thì số dư có thể là 0;1;2

=> Khi chia 3 số tự nhiên bất kì cho 3 thì số dư bằng 1 trong 3 số 0;1;2

=> 2 trong 3 số đó có cùng số dư => Tổng, hiệu của 2 trong 3 số chia hết cho 3

 Mashiro Shiina
12 tháng 7 2017 lúc 22:22

Gọi 3 số tự nhiên bất kì đó là a;b;c

Khi chia cho 3 thì sẽ đều có dạng:\(3k;3k+1;3k+2\)

Ta có: chọn 2 số tự nhiên bất kì đó có thể là:

\(3k+1+3k+2\)

\(=3k+3k+3=6k+3=3\left(2k+1\right)⋮3\)

Ta có: 2 số tự nhên bất kì nên chúng có thể giống nhau:
\(3k-3k=0⋮3\)

\(\rightarrowđpcm\)

Giang Lê
Xem chi tiết
Khánh Chi
Xem chi tiết
Le Vu Hoang Mai
23 tháng 10 2018 lúc 20:09

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.