Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thùy Trinh Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2024 lúc 7:30

loading...  

Trân Trần
Xem chi tiết
Trân Trần
6 tháng 8 2021 lúc 11:33

Mình sẽ tặng coin cho người làm đầu tiên nha

 

Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 12:03

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

b) Xét ΔABC có AB<AC<BC(3cm<4cm<5cm)

mà góc đối diện với cạnh AB là \(\widehat{ACB}\)

và góc đối diện với cạnh AC là \(\widehat{ABC}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

Xét ΔABC có 

HB là hình chiếu của AB trên BC

HC là hình chiếu của AC trên BC

AB<AC

Do đó: HB<HC

c) Xét ΔCAB vuông tại A và ΔCAD vuông tại A có 

CA chung

AB=AD(gt)

Do đó: ΔCAB=ΔCAD(hai cạnh góc vuông)

Suy ra: CB=CD(hai cạnh tương ứng)

Xét ΔCBD có CB=CD(cmt)

nên ΔCBD cân tại C(Định nghĩa tam giác cân)

Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 12:07

d: Xét ΔCBD có 

CA là đường cao ứng với cạnh DB

BK là đường cao ứng với cạnh CD

CA cắt BK tại F

Do đó: F là trực tâm của ΔCBD(Tính chất ba đường cao của tam giác)

Suy ra: DF\(\perp\)BC

Ta có: DF\(\perp\)BC(cmt)

AH\(\perp\)BC(gt)

Do đó: DF//AH(Định lí 1 từ vuông góc tới song song)

Xét ΔFAB vuông tại A và ΔFAD vuông tại A có 

FA chung

AB=AD

Do đó: ΔFAB=ΔFAD

Suy ra: FB=FD(hai cạnh tương ứng

Xét ΔFBD có FB=FD

nên ΔFBD cân tại F

e: Xét ΔFBD có 

A là trung điểm của BD

AE//DF

Do đó: E là trung điểm của BF

Bảy Lê
Xem chi tiết
Minh
Xem chi tiết
Minh
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2022 lúc 22:42

Bài 1 : 

Thay x = 2 ; y = -1/2 ta được 

\(B=-8+2.4\left(-\dfrac{1}{2}\right)-4.2.\left(\dfrac{1}{4}\right)+2\left(-\dfrac{1}{2}\right)-3\)

\(=-8-4-2-1-3=-18\)

Minh Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2021 lúc 21:14

a) Ta có: \(\left(2x-3\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};-\dfrac{4}{3}\right\}\)

b) Ta có: \(x^3-3x^2+3x-1=\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x-1\right)^3-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-2x+1-x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-3x\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=3\end{matrix}\right.\)

Vậy: S={0;1;3}

c) Ta có: \(x^2+x=2x+2\)

\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy: S={-1;2}

d) Ta có: \(\left(x-1\right)^2=2\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1-2x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)Vậy: S={1;-3}

e) Ta có: \(2\left(x+2\right)^2-x^3-8=0\)

\(\Leftrightarrow2\left(x+2\right)^2-\left(x^3+8\right)=0\)

\(\Leftrightarrow2\left(x+2\right)\cdot\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x+4-x^2+2x-4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\cdot\left(-x^2+4x\right)=0\)

\(\Leftrightarrow-x\left(x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=4\end{matrix}\right.\)

Vậy: S={0;-2;4}

Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 11:03

a: \(P=-\left|5-x\right|+2019\le2019\forall x\)

Dấu '=' xảy ra khi x=5

N.M.Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 10:59

a: P(x)=2x^3-2x^3+x^2+3x^2-4x^2-3x+5x+1=-3x+6

b: P(0)=-3*0+6=6

P(-1)=6+3=9

P(1/3)=-1+6=5

c: P(x)=0

=>-3x+6=0

=>-3x=-6

=>x=2

P(x)=1

=>-3x+6=1

=>-3x=-5

=>x=5/3

 

Lê Toàn Hiếu
Xem chi tiết

a: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD⊥BC tại D

Xét tứ giác AHDC có \(\hat{AHC}=\hat{ADC}=90^0\)

nên AHDC là tứ giác nội tiếp

b: AHDC nội tiếp

=>\(\hat{AHD}+\hat{ACD}=180^0\)

\(\hat{AHD}+\hat{MHD}=180^0\) (hai góc kề bù)

nên \(\hat{MHD}=\hat{ACD}=\hat{ACB}\)

Xét ΔOAC vuông tại A có AH là đường cao

nên \(OH\cdot OC=OA^2\)

=>\(OH\cdot OC=OB^2\)

=>\(\frac{OH}{OB}=\frac{OB}{OC}\)

Xét ΔOHB và ΔOBC có

\(\frac{OH}{OB}=\frac{OB}{OC}\)

góc HOB chung

Do đó: ΔOHB~ΔOBC

=>\(\hat{OHB}=\hat{OBC}=\hat{ABC}\)

\(\hat{OHB}+\hat{MHB}=\hat{OHM}=90^0\)\(\hat{ABC}+\hat{ACB}=90^0\) (ΔABC vuông tại A)

nên \(\hat{MHB}=\hat{ACB}\)

=>\(\hat{MHB}=\hat{DHM}\)

=>HM là phân giác của góc DHB



TRẦN NGỌC PHƯƠNG NGHI_7A...
Xem chi tiết
Sunn
22 tháng 1 2022 lúc 10:20

used to deliver

used to be

used to go

used to drive

used to spend

used to believe

used to work

used to serve

Lê Phạm Phương Trang
22 tháng 1 2022 lúc 10:21

1. used to deliver

2. used to be 

3. used to go

4. used to drive

5. used to spend

6. used to believe

7.used to work

8. used to serve