Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thanh Đức
Xem chi tiết
...
Xem chi tiết
Đặng Viết Thái
24 tháng 3 2019 lúc 21:45

\(\Leftrightarrow\frac{x-1}{117}+1+\frac{x-2}{118}+1+\frac{x-3}{119}=\frac{x-4}{120}+1+\frac{x-5}{121}+1+\frac{x-6}{122}+1\)

\(\Leftrightarrow\frac{x+116}{117}+\frac{x+116}{118}+\frac{x+116}{119}-\frac{x+116}{120}-\frac{x+116}{121}-\frac{x+116}{122}=0\)

\(\Leftrightarrow\left(x+116\right)\left(\frac{1}{117}+\frac{1}{118}+\frac{1}{119}-\frac{1}{120}-\frac{1}{121}-\frac{1}{122}\right)=0\)

\(\Leftrightarrow x+116=0\Leftrightarrow x=-116\)

Dương Lam Hàng
24 tháng 3 2019 lúc 21:46

\(\frac{x-1}{117}+\frac{x-2}{118}+\frac{x-3}{119}=\frac{x-4}{120}+\frac{x-5}{121}+\frac{x-6}{122}\)

\(\Leftrightarrow\frac{x-1}{117}+1+\frac{x-2}{118}+1+\frac{x-3}{119}+1=\frac{x-4}{120}+1+\frac{x-5}{121}+1+\frac{x-6}{122}+1\)

\(\Leftrightarrow\frac{x+116}{117}+\frac{x+116}{118}+\frac{x+116}{119}-\frac{x+116}{120}-\frac{x+116}{121}-\frac{x+116}{122}=0\)

\(\Leftrightarrow\left(x+116\right)\left(\frac{1}{117}+\frac{1}{118}+\frac{1}{119}-\frac{1}{120}-\frac{1}{121}-\frac{1}{122}\right)=0\)

Vì \(\frac{1}{117}+\frac{1}{118}+\frac{1}{119}-\frac{1}{120}-\frac{1}{121}-\frac{1}{122}\ne0\)

Nên x + 116 = 0

<=> x = -116

Lê Thu Phương
Xem chi tiết
Sửu Nhi
5 tháng 7 2016 lúc 12:10

Bài 1:

Thay \(x=\frac{4}{3};y=-1\)vào biểu thức A, ta được:

\(A=\frac{4}{3}\cdot\left[3\cdot\frac{4}{3}-\left(-1\right)\right]-\left(3\cdot\frac{4}{3}+1\right)\left(-1\right)\)

\(A=\frac{20}{3}+5=\frac{35}{3}\)

Vậy khi \(x=\frac{4}{3};y=-1\)thì A=\(\frac{35}{3}\)

\(B=3\frac{1}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot5\frac{118}{119}-\frac{8}{39}\)

\(B=\frac{352}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot\frac{713}{119}-\frac{8}{39}=-\frac{412}{1071}\)

 

lee
Xem chi tiết
Diệu Huyền
23 tháng 11 2019 lúc 10:06

Điều kiện xác định: \(x\ne1;3\)

Với điều kiện xác định như trên:

\(\frac{3}{x-3}-\frac{2}{x-1}=\frac{x-1}{2}-\frac{x-3}{3}\)

\(\Leftrightarrow\frac{3\left(x-1\right)-2\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{3\left(x-1\right)-2\left(x-3\right)}{6}\)

\(\Leftrightarrow\frac{x+3}{\left(x-1\right)\left(x-3\right)}=\frac{x+3}{6}\)

\(\Leftrightarrow\left(x+3\right)\left(\frac{1}{\left(x-1\right)\left(x-3\right)}-\frac{1}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x-1\right)\left(x-3\right)=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(tm\right)\\\left(x-4x+3-6=0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\pm\sqrt{7}\left(tm\right)\end{matrix}\right.\)

Vậy phương trình có 3 nghiệm \(x=-3\) hoặc \(x=2\pm\sqrt{7}\)

Khách vãng lai đã xóa
Nguyen Bao Linh
Xem chi tiết
Nguyen Bao Linh
27 tháng 1 2017 lúc 8:05

a, Đặt \(x=\frac{1}{117}\), \(y=\frac{1}{119}\) ta có:

\(A=\left(3+x\right)y-4x\left(5+1-y\right)-5xy+24x\)

\(=3y+xy-24x+4xy-5xy+24x\)

\(=3y\)

\(=\frac{3}{119}\)

b, Thay 8 bằng x + 1 ta có:\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)

\(=7-5\)

= 2

Dennis
27 tháng 1 2017 lúc 11:35

a) Đặt a = \(\frac{1}{117}\)và b = \(\frac{1}{119}\)

Theo đề ta có:

A = (3 + a) b - 4a ( 5+1-b)-5ab+24a

= 3b + ab - 20a -4a + 4ab - 5ab + 24a

= 3b

= 1.\(\frac{1}{119}\) = \(\frac{3}{119}\)

Vậy A = \(\frac{3}{119}\)

ok

Phí Quỳnh Anh
Xem chi tiết
Hạc Phởn
Xem chi tiết
Ngô Chi Lan
Xem chi tiết
Kiệt Nguyễn
29 tháng 7 2020 lúc 15:26

\(ĐKXĐ:x\ne\frac{5-\sqrt{13}}{2};x\ne\frac{5+\sqrt{13}}{2}\)

\(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=-\frac{3}{2}\)

*) Xét x = 0 thì \(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=0\)(Loại)

*) Xét \(x\ne0\)thì phương trình tương đương \(\frac{4}{x+\frac{3}{x}+1}+\frac{5}{x+\frac{3}{x}-5}=-\frac{3}{2}\)

Đặt \(x+\frac{3}{x}=t\)thì phương trình trở thành \(\frac{4}{t+1}+\frac{5}{t-5}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{4t-20+5t+5}{\left(t+1\right)\left(t-5\right)}=-\frac{3}{2}\Leftrightarrow\frac{9t-15}{t^2-4t-5}=-\frac{3}{2}\)

\(\Leftrightarrow18t-30=-3t^2+12t+15\Leftrightarrow3t^2+6t-45=0\)

\(\Leftrightarrow3\left(t-3\right)\left(t+5\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-5\end{cases}}\)

+) t = 3 thì \(x+\frac{3}{x}=3\Leftrightarrow\frac{x^2+3}{x}=3\Leftrightarrow x^2-3x+3=0\)

Mà \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}>0\forall x\)nên loại trường hợp t = 3

+) t = -5 thì \(x+\frac{3}{x}=-5\Leftrightarrow\frac{x^2+3}{x}=-5\Leftrightarrow x^2+5x+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{13}}{2}\\x=\frac{-5-\sqrt{13}}{2}\end{cases}}\)

Vậy phương trình có 2 nghiệm \(\left\{\frac{-5+\sqrt{13}}{2};\frac{-5-\sqrt{13}}{2}\right\}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
29 tháng 7 2020 lúc 15:28

Bài làm:

đkxđ: \(x\ne\left\{\frac{5+\sqrt{13}}{2};\frac{5-\sqrt{13}}{2}\right\}\)

+ Nếu x = 0:

\(Pt\Leftrightarrow0=-\frac{3}{2}\)(vô nghiệm)

+ Nếu x khác 0:

\(Pt\Leftrightarrow\frac{4x}{x\left(x+\frac{3}{x}+1\right)}+\frac{5x}{x\left(x+\frac{3}{x}-5\right)}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{4}{x+\frac{3}{x}+1}+\frac{5}{x+\frac{3}{x}-5}=-\frac{3}{2}\)

Đặt \(x+\frac{3}{x}=y\)

\(Pt\Leftrightarrow\frac{4}{y+1}+\frac{5}{y-5}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{8\left(y-5\right)+10\left(y+1\right)}{2\left(y+1\right)\left(y-5\right)}=-\frac{3\left(y-5\right)\left(y+1\right)}{2\left(y+1\right)\left(y-5\right)}\)

\(\Rightarrow8y-40+10y+10=-3\left(y^2-4y-5\right)\)

\(\Leftrightarrow18y-30=-3y^2+12y+15\)

\(\Leftrightarrow3y^2+6y-45=0\)

\(\Leftrightarrow y^2+2y-15=0\)

\(\Leftrightarrow\left(y-3\right)\left(y+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-3=0\\y+5=0\end{cases}}\Leftrightarrow\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}\)

Nếu: \(y=3\Leftrightarrow x+\frac{3}{x}=3\Leftrightarrow\frac{x^2+3}{x}=3\Leftrightarrow x^2+3=3x\)

\(\Leftrightarrow x^2-3x+3=0\)

\(\Leftrightarrow\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-\frac{3}{4}\)(vô lý)

=> không tồn tại x thỏa mãn

Nếu: \(y=-5\Leftrightarrow x+\frac{3}{x}=-5\Leftrightarrow\frac{x^2+3}{x}=-5\Leftrightarrow x^2+3=-5x\)

\(\Leftrightarrow x^2+5x+3=0\)

\(\Leftrightarrow\left(x^2+5x+\frac{25}{4}\right)-\frac{13}{4}=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}-\frac{\sqrt{13}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{13}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5-\sqrt{13}}{2}=0\\x+\frac{5+\sqrt{13}}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-5}{2}\\x=\frac{-5-\sqrt{13}}{2}\end{cases}}\)(thỏa mãn)

Vậy tập nghiệm của PT \(S=\left\{\frac{-5-\sqrt{13}}{2};\frac{\sqrt{13}-5}{2}\right\}\)

Khách vãng lai đã xóa
Hạc Phởn
Xem chi tiết
Ác Mộng
26 tháng 6 2015 lúc 11:58

\(2\frac{1}{117}.3\frac{1}{119}-\frac{116}{117}.5\frac{118}{119}-\frac{3}{119}=\left(3-\frac{116}{117}\right)\cdot\left(4-\frac{118}{119}\right)-5\cdot\frac{116}{117}\cdot\frac{118}{119}-\frac{3}{119}\)

mình đang ngại mình làm đến đó bạn tự phá ngoại rồi đặt nhân tử chung nha