Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trankien
Xem chi tiết
Cửu vĩ linh hồ Kurama
6 tháng 10 2016 lúc 20:42

Cái này thì....mình mù tịt

Vì chưa học!!!!

Ai đồng ý thì cho mình xin 1 k!!!

trankien
6 tháng 10 2016 lúc 20:45

hazz... có bạn HSG nào giải giúp ko

Võ Hoàng Minh Thư
27 tháng 3 2017 lúc 19:11

\(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)\(\sqrt{42}\)=  23,75790715.

Vì vậy : \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)  sẽ lớn hơn 24.

Dùng máy tính là được chứ gì.

Nguyễn Thảo Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2022 lúc 22:21

a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)

b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)

\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)

\(=-60-144\sqrt{2}+30\sqrt{2}+144\)

\(=84-114\sqrt{2}\)

Vũ Ngọc Hồng Anh
Xem chi tiết

Bạn điền dấu thì đúng rùi đó

\(\sqrt{2}\)\(+\sqrt{6}\)\(+\sqrt{12}\)\(+\sqrt{20}\)\(< 12\)

HT

Khách vãng lai đã xóa
Vũ Ngọc Hồng Anh
Xem chi tiết
manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 15:35

loading...  

I Love Song Joong ki
Xem chi tiết
Nguyễn Tấn An
Xem chi tiết
Nhã Doanh
25 tháng 7 2018 lúc 15:27

\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(5\sqrt{\dfrac{1}{12}}+12\right)\)

\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\sqrt{6}-\left(\dfrac{5\sqrt{3}}{6}+12\right)\)

\(=6\sqrt{2}-18\sqrt{2}+12-\left(\dfrac{5\sqrt{3}+72}{6}\right)\)

\(=-12\sqrt{2}+12-\dfrac{5\sqrt{3}+72}{6}\)

\(=\dfrac{-72\sqrt{2}+72-5\sqrt{3}-72}{6}=\dfrac{5\sqrt{3}+72\sqrt{2}}{6}\simeq-18,4139\)

Ta có: \(-14,5\sqrt{2}\simeq-20,506\)

\(VT\ne VP\)

Đẳng thức không xảy ra

Phú Nguyễn Duy
Xem chi tiết
Hoàng Thanh
Xem chi tiết
tth_new
11 tháng 4 2019 lúc 9:21

\(\left(\sqrt{2}+\sqrt{12}\right)+\left(\sqrt{6}+\sqrt{20}\right)\)

Ta sẽ c/m \(\sqrt{2}+\sqrt{12}< 5\) và \(\sqrt{6}+\sqrt{20}< 7\)

Thật vậy:Ta cần c/m \(\sqrt{2}+\sqrt{12}< 5\Leftrightarrow2+2\sqrt{24}+12< 25\) (do hai vế đều dương nên bình phương cả hai vế lên khai triển -> phá ngoặc)

\(\Leftrightarrow2\sqrt{24}< 11\Leftrightarrow\sqrt{24}< \frac{11}{2}\) (1) 

Ta có: \(\sqrt{24}< \sqrt{25}=5< \frac{11}{2}\)vậy (1) đúng suy ra \(\sqrt{2}+\sqrt{12}< 5\) (2)

Ta cần c/m: \(\sqrt{6}+\sqrt{20}< 7\Leftrightarrow6+2\sqrt{120}+20< 49\)

\(\Leftrightarrow2\sqrt{120}=23\Leftrightarrow\sqrt{120}< \frac{23}{2}\) (3)

Ta có: \(\sqrt{120}< \sqrt{121}=11< \frac{23}{2}\) do đó (3) đúng suy ra \(\sqrt{6}+\sqrt{20}< 7\) (4)

Cộng theo vế (2) và (4) ta được: \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 7+5=12^{\left(đpcm\right)}\)

P/s: Bài easy + nhiều cách giải mà không ai chém nhỉ?