Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh:\(\frac{c^3}{d^3}=\frac{a^3-c^3}{b^3-d^3}\)
Cho \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)Chứng minh \(\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\)
\(\frac{a}{c}=\frac{c}{d}=\frac{b}{d}=\frac{a+c-b}{a+b-d}\)
\(=\left(\frac{a+c-b}{c+b-d}\right)^3=\frac{a^3+c^3-b^3}{c^3+b^3+d^3}=\frac{a}{d}\left(ĐPCM\right)\)
p/S : chưa chắc
Từ \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\)(1)
mà \(\left(\frac{a}{c}\right)^3=\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a.c.b}{c.b.d}=\frac{a}{d}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\left(đpcm\right)\)
Cho:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh:\(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\frac{a}{d}\)
ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
áp dụng tính chất của dãy TSBN ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\) (1)
vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
từ (1), (2) \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\frac{a}{d}\) (vì cùng bằng \(\frac{a^3}{b^3}\))
link nè
https://olm.vn/hoi-dap/detail/9632048414.html
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). chứng minh rằng \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}\)\(=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
\(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=>Đpcm
Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow a=\frac{b^2}{c}\); \(\frac{b}{c}=\frac{c}{d}\Rightarrow d=\frac{c^2}{b}\)
Ta có vế trái : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(\frac{b^2}{c}\right)^3+b^3+c^3}{b^3+c^3+\left(\frac{c^2}{b}\right)^3}=\frac{\frac{b^6+b^3c^3+c^6}{c^3}}{\frac{b^6+b^3c^3+c^6}{b^3}}\)\(=\frac{b^6+b^3c^3+c^6}{c^3}\cdot\frac{b^3}{b^6+b^3c^3+c^6}=\frac{b^3}{c^3}\)
Ta có vế phải: \(\frac{a}{d}=\frac{\frac{b^2}{c}}{\frac{c^2}{b}}=\frac{b^2}{c}\cdot\frac{b}{c^2}=\frac{b^3}{c^3}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(1)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (2)
Từ (1) và (2) => đpcm
\(Cho\frac{a}{b}=\frac{c}{d}(a,b,c,d\ne0).\)Chứng minh rằng :
\(\frac{a^3+b^3}{c^3 +d^3}=\frac{a+b^3}{c+d^3}\)\((\frac{a}{b}=\frac{c}{d}\ne1)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\)
\(\frac{a+b^3}{c+d^3}=\frac{bk+b^3}{dk+d^3}\)
Đề bài sai nhé bạn
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) với b+c+d khác 0.
Chứng minh:\(\frac{a^3+b^3+c^3}{b^3+c^3-d^3}=\left(\frac{a+d-c}{b+c-d}\right)^3\)
Cho a,b,c,d > 0. Chứng minh :
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{d^2}+\frac{d^3}{a^2}\ge a+b+c+d\)
Đặt vế trái là P
\(\frac{a^3}{b^2}+b+b\ge3\sqrt[3]{\frac{a^3b^2}{b^2}}=3a\)
Tương tự: \(\frac{b^3}{c^2}+2c\ge3b\) ; \(\frac{c^3}{d^2}+2d\ge3c\); \(\frac{d^3}{a^2}+2a\ge3d\)
Cộng vế với vế:
\(P+2\left(a+b+c+d\right)\ge3\left(a+b+c+d\right)\)
\(\Leftrightarrow P\ge a+b+c+d\)
Dấu "=" xảy ra khi \(a=b=c=d\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\).Chứng minh rằng \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
Cho a,b,c,d > 0. Chứng minh \(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\) ≥ \(\frac{a+b+c+d}{3}\)
\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)
Tương tự ta có
\(\frac{b^4}{b^3+2c^3}\ge b-\frac{2}{3}c\) ; \(\frac{c^4}{c^3+2d^3}\ge c-\frac{2}{3}d\) ; \(\frac{d^4}{d^3+2a^3}\ge d-\frac{2}{3}a\)
Cộng vế với vế:
\(VT\ge a+b+c+d-\frac{2}{3}\left(a+b+c+d\right)=\frac{a+b+c+d}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Mong các bạn có thể giúp mik, mik đang cần rất gấp. Cảm ơn các bạn nhiều!