Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Em Sóc nhỏ
Xem chi tiết
Đặng Tú Phương
15 tháng 1 2019 lúc 19:40

\(\frac{a}{c}=\frac{c}{d}=\frac{b}{d}=\frac{a+c-b}{a+b-d}\)

\(=\left(\frac{a+c-b}{c+b-d}\right)^3=\frac{a^3+c^3-b^3}{c^3+b^3+d^3}=\frac{a}{d}\left(ĐPCM\right)\)

p/S : chưa chắc 

Albert Einstein
15 tháng 1 2019 lúc 19:41

Từ \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\)(1)

mà \(\left(\frac{a}{c}\right)^3=\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a.c.b}{c.b.d}=\frac{a}{d}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\left(đpcm\right)\)

Roxie
Xem chi tiết
kim chi hàn quốc
21 tháng 8 2019 lúc 22:13

ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

áp dụng tính chất của dãy TSBN ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\) (1)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

từ (1), (2) \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\frac{a}{d}\) (vì cùng bằng \(\frac{a^3}{b^3}\))

Khánh Link
21 tháng 8 2019 lúc 22:15

link nè

https://olm.vn/hoi-dap/detail/9632048414.html

Nguyễn Thị Hải Yến
Xem chi tiết
Đoàn Cẩm Ly
1 tháng 2 2017 lúc 15:19

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}\)\(=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>Đpcm

quach thi thanh tu
1 tháng 2 2017 lúc 15:29

đoàn cẩm lý sai rồi

Phạm Trần Minh Ngọc
1 tháng 2 2017 lúc 15:34

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow a=\frac{b^2}{c}\)\(\frac{b}{c}=\frac{c}{d}\Rightarrow d=\frac{c^2}{b}\)

Ta có vế trái  : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(\frac{b^2}{c}\right)^3+b^3+c^3}{b^3+c^3+\left(\frac{c^2}{b}\right)^3}=\frac{\frac{b^6+b^3c^3+c^6}{c^3}}{\frac{b^6+b^3c^3+c^6}{b^3}}\)\(=\frac{b^6+b^3c^3+c^6}{c^3}\cdot\frac{b^3}{b^6+b^3c^3+c^6}=\frac{b^3}{c^3}\)

Ta có vế phải: \(\frac{a}{d}=\frac{\frac{b^2}{c}}{\frac{c^2}{b}}=\frac{b^2}{c}\cdot\frac{b}{c^2}=\frac{b^3}{c^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

cộng tác viên
Xem chi tiết
Trà My
15 tháng 1 2017 lúc 22:41

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(1)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)  (2)

Từ (1) và (2) => đpcm

Bá Phong Nguyễn
Xem chi tiết
Pham Van Hung
6 tháng 12 2020 lúc 23:06

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\)

\(\frac{a+b^3}{c+d^3}=\frac{bk+b^3}{dk+d^3}\)

Đề bài sai nhé bạn

Khách vãng lai đã xóa
Lê Minh Tuấn
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 2 2020 lúc 18:32

Đặt vế trái là P

\(\frac{a^3}{b^2}+b+b\ge3\sqrt[3]{\frac{a^3b^2}{b^2}}=3a\)

Tương tự: \(\frac{b^3}{c^2}+2c\ge3b\) ; \(\frac{c^3}{d^2}+2d\ge3c\); \(\frac{d^3}{a^2}+2a\ge3d\)

Cộng vế với vế:

\(P+2\left(a+b+c+d\right)\ge3\left(a+b+c+d\right)\)

\(\Leftrightarrow P\ge a+b+c+d\)

Dấu "=" xảy ra khi \(a=b=c=d\)

Khách vãng lai đã xóa
Hà Thanh Thùy
Xem chi tiết
HOANGTRUNGKIEN
2 tháng 2 2016 lúc 14:35

minh moi hoc lop 6 thoi

Trần Anh Thơ
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2020 lúc 16:50

\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)

Tương tự ta có

\(\frac{b^4}{b^3+2c^3}\ge b-\frac{2}{3}c\) ; \(\frac{c^4}{c^3+2d^3}\ge c-\frac{2}{3}d\) ; \(\frac{d^4}{d^3+2a^3}\ge d-\frac{2}{3}a\)

Cộng vế với vế:

\(VT\ge a+b+c+d-\frac{2}{3}\left(a+b+c+d\right)=\frac{a+b+c+d}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

Trần Anh Thơ
24 tháng 4 2020 lúc 10:17

Mong các bạn có thể giúp mik, mik đang cần rất gấp. Cảm ơn các bạn nhiều!