Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tống châu
Xem chi tiết
Nguyễn Linh Chi
18 tháng 9 2019 lúc 14:15

Tham khảo cách làm tương tự: Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

Phạm Thị Thu Thảo
Xem chi tiết
Slendrina
Xem chi tiết
T.Thùy Ninh
14 tháng 6 2017 lúc 20:15

\(a,n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)

Ngọc Thiện Hồ
Xem chi tiết
Kị tử thần
Xem chi tiết
Cố Tử Thần
3 tháng 10 2019 lúc 22:33

n^2(n-3)-(n-3)=(n-3)(n^2-1)=(n-3)(n-1)(n+1)

Có: (n-1)(n+1) là tích 2 số chắn liên tiếp=> (n-1)(n+1) chia hết cho 8

n lẻ=> n-3 chẵn=> n-3 chia hết cho 2

=> (n-3)(n-1)(n+1) chia hết cho 2*8=16(1)

Mặt khác n^3-3n^2-n+3 = n(n^2-1)-3(n^2-1)=n(n-1)(n+1)-3(n^2-1)

thấy n(n-1)(n+1) là tích 3 stn liên tiếp => n(n-1)(n+1) chia hết cho 3

lại có: 3(n^2-1) chia hết cho 3

=> n^3-3n^2-n+3 chia hết cho 3(2)

(1)(2)=>n^3-3n^2-n+3 chia hết cho 48

Vũ Tiến Manh
3 tháng 10 2019 lúc 22:34

n^3-3n^2-n+3=(n^3-n)-3(n^2-1)=n(n^2-1)-3(n^2-1)=(n-3)(n-1)(n+1)

n lẻ nên có dạng n=2k+1 (k \(\in N\)) thay vào trên ta được

(2k-2)2k(2k+2)=8(k-1)k(k+1) chia hết cho 48 nếu (k-10k(k+10 chia hết cho 6

Thật vậy

(k-1)k(K+1) là 3 số liên tiếp nên luôn tồn tại một số chia hết cho 3

(k-1)k(k+1) cũng luôn tồn tại ít nhất một số chia hết cho 2

vậy (k-1)k(k+1) chia hết cho 6 (chứng minh xong)

Bùi Mạnh Toàn Thắng
Xem chi tiết
Nguyễn Linh Chi
18 tháng 9 2019 lúc 14:16

Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

Cô nàng giấu tên
Xem chi tiết
Nguyễn Trúc Quỳnh
Xem chi tiết
Hoàng Phúc
28 tháng 3 2016 lúc 20:59

n3+3n2-n-3=(n-1)(n+1)(n+3)

Vì n là số nguyên lẻ nên n=2k+1 (k \(\in\) Z),khi đó:

n3+3n2-n-3=(n-1)9n+1)(n+3)=8k(k+1)(k+2)

Mà k(k+1)(k+2) luôn chia hết cho 2.3=6

=>8k(k+1)(k+2) chia hết cho 6.8=48

Vậy n3+3n2-n-3 chia hết cho 48(n là số nguyên lẻ)

erza sarlet
Xem chi tiết
Chippy Linh
25 tháng 9 2017 lúc 10:48

A = n3-3n2-n+3 = n2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
Vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A \(⋮\) 16(1)
mặt khác:
A = n3-3n2-n+3 = n3 - n - 3(n2 - 1) = n(n+1)(n-1) - 3(n2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) 3 => A \(⋮\) 3
n = 3k + 1 => (n -1) \(⋮\) 3 => A \(⋮\) 3
n = 3k + 2 => (n+1) = 3k + 3 \(⋮\) 3
=> A \(⋮\) 3 (2)

Từ (1) và (2) => A \(⋮\) 3.16 = 48 (3; 16 là 2 số nguyên tố cùng nhau).

An Trần
25 tháng 9 2017 lúc 10:56

Ta có:

\(n^3-3n^2-n+3\)

\(=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)

Thay \(n=2k+1\), ta có:

\(\left(2k+1+1\right)\left(2k\right)\left(2k-2\right)\)

\(=2k.2.2.k.\left(k+1\right)\left(k-1\right)\)

\(=8\left(k-1\right)k.\left(k+1\right)\)

Ta thấy k, k-1 ; k+1 là 3 số tự nhiên liên tiếp, mà 3 số tự nhiên liên tiếp thì chia hết cho 6.

=> \(n^3-3n^2-2+3⋮48\) với mọi số n lẻ.

Vậy ...

minh tống
Xem chi tiết
Momozono Nanami
8 tháng 6 2017 lúc 10:32

Bài 2 chia đa thức cho đa thức ta được số dư là 6-a(7-2a)

 để đa thức 2x+ 7x + 6 chia hết cho x+a thì 6-a(7-2a)=0

=>6-7a+2a2=0

<=>2a2-4a-3a+6=0

<=>2a(a-2)-3(a-2)=0

<=>(a-2)(2a-3)=0

=> a=2 hoặc a=3/2

Vậy vớia=2 hoặc a=3/2 thì đa thức 2x+ 7x + 6 chia hết cho x+a

Momozono Nanami
8 tháng 6 2017 lúc 9:28

bài 1

n lẻ nên đặt n=2k+1 (k thuộc Z)

Ta có n3-3n2-n+3=n2(n-3)-(n-3)

=(n-3)(n-1)(n+1)

=(2k+1-3)(2k+1-1)(2k+1+1)

=2k(2k+2)(2k-2)

=8.(k-1).k.(k+1)

Vì (k-1).k.(k+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3 mà (2;3)=1 nên chia hết cho 6 

Ta có 48=6.8 nên 8.k(k+1)(k-1) chia hết cho 48 hay n3-3n2-n+3chia hết cho 48