Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cẩm Nhii
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2022 lúc 23:11

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)

RICKASTLEY
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2022 lúc 13:34

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó; ΔABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=R\sqrt{3}\)

b: Xét ΔDOB có

BA là đường trung tuyến

BA=DO/2

Do đó: ΔDOB vuông tại B

hay DB là tiếp tuyến của (O)

Lâm Nhựt Tân
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết
An Thy
5 tháng 6 2021 lúc 20:17

a) Ta có: \(\angle SAO+\angle SBO=90+90=180\Rightarrow SAOB\) nội tiếp

Vì SA,SB là tiếp tuyến \(\Rightarrow SA=SB\) và SO là phân giác \(\angle BSA\Rightarrow SO\bot AB\)

b) Xét \(\Delta SBD\) và \(\Delta SEB:\) Ta có: \(\left\{{}\begin{matrix}\angle SBD=\angle SEB\\\angle BSEchung\end{matrix}\right.\)

\(\Rightarrow\Delta SBD\sim\Delta SEB\left(g-g\right)\Rightarrow\dfrac{SB}{SE}=\dfrac{SD}{SB}\Rightarrow SB^2=SD.SE\)

c) Trong (O) có DE là dây cung không đi qua O và I là trung điểm DE

\(\Rightarrow OI\bot DE\Rightarrow\angle OIS=90=\angle OBS\Rightarrow\) OIBS nội tiếp

\(\Rightarrow O,I,B,S,A\) cùng thuộc 1 đường tròn

\(\Rightarrow\) BIAS nội tiếp \(\Rightarrow\angle BIS=\angle BAS=\angle ABS\)

Xét \(\Delta SBK\) và \(\Delta SIB:\) Ta có: \(\left\{{}\begin{matrix}\angle SBK=\angle SIB\\\angle BSIchung\end{matrix}\right.\)

\(\Rightarrow\Delta SBK\sim\Delta SIB\left(g-g\right)\Rightarrow\dfrac{SB}{SI}=\dfrac{SK}{SB}\Rightarrow SB^2=SI.SK\) 

mà \(SB^2=SD.SE\Rightarrow SD.SE=SI.SK\)

d) Ta có: \(\angle SIB=\angle SBK=\angle BEA\Rightarrow90-\angle SIB=90-\angle BEA\)

\(\Rightarrow\angle FIB=\angle FEB\Rightarrow FBIE\) nội tiếp

\(\Rightarrow\angle FBE=\angle FIE=90\Rightarrow FB\bot BE\)

mà \(AB\bot BE\left(\angle ABE=90\right)\Rightarrow\) A,B,F thẳng hàngundefined

Chu Minh Long
Xem chi tiết
Ngọc Phạm
Xem chi tiết
trần minh hiếu
Xem chi tiết
Bùi Vương TP (Hacker Nin...
14 tháng 11 2018 lúc 20:54

A B O C 2R R

TA CÓ AB\(=2R\)

\(\Leftrightarrow0B=BC=R\)

HAY \(BC=\frac{1}{2}AB\)

CÓ NGHĨA BC LÀ NỮA TRUNG ĐIỂM CỦA BC

\(\Rightarrow AC\perp BC\)ĐỊNH LÝ 3

Bùi Vương TP (Hacker Nin...
14 tháng 11 2018 lúc 20:59

CHO \(R=2cm\)tính cho nó rễ

áp dụng địn lý pi ta gao trong tam giác ABC vuông tại C

\(\Rightarrow AB^2=AC^2+BC^2\)

\(\Rightarrow AC^2=16-4\)

\(\Rightarrow AC=\sqrt{12}cm\)

vậy .............

Wolf 2k6 has been cursed
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 19:22

a) Xét tứ giác SAOB có 

\(\widehat{SAO}+\widehat{SBO}=180^0\left(90^0+90^0=180^0\right)\)

nên SAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

SA là tiếp tuyến có A là tiếp điểm(gt)

SB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: SA=SB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: SA=SB(cmt)

nên S nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OB(=R)

nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra SO là đường trung trực của AB

hay SO\(\perp\)AB(Đpcm)

An Thy
28 tháng 6 2021 lúc 10:38

b) đề phải là \(SA^2=SD.SE\) chứ SD không bằng SE sao \(SD^2=SD.SE\) được

Vì AE là đường kính \(\Rightarrow\angle ADE=90\) mà \(\angle SAE=90\)

\(\Rightarrow\Delta SAE\) vuông tại A có AD là đường cao

\(\Rightarrow SA^2=SD.SE\)

c) Trong (O) có DE là dây cung không đi qua O và I là trung điểm DE

\(\Rightarrow OI\bot DE\Rightarrow\angle OIS=90\Rightarrow\angle OIS=\angle OBS=90\)

\(\Rightarrow OIBS\) nội tiếp mà SAOB nội tiếp (câu a)

\(\Rightarrow O,I,A,S,B\) cùng thuộc 1 đường tròn

\(\Rightarrow AIBS\) nội tiếp \(\Rightarrow\angle AIS=\angle ABS=\angle SAB\) (\(\Delta SAB\) cân tại S)

Xét \(\Delta SAK\) và \(\Delta SIA:\) Ta có: \(\left\{{}\begin{matrix}\angle SIA=\angle SAK\\\angle ISAchung\end{matrix}\right.\)

\(\Rightarrow\Delta SAK\sim\Delta SIA\left(g-g\right)\Rightarrow\dfrac{SA}{SI}=\dfrac{SK}{SA}\Rightarrow SA^2=SK.SI\)

mà \(SA^2=SD.SE\Rightarrow SD.SE=SK.SI\)

d) AB cắt OI tại F'

Vì AE là đường kính \(\Rightarrow\angle ABE=90\Rightarrow F'BE=90\)

\(\Rightarrow\angle F'BE=\angle F'IE\Rightarrow F'BIE\) nội tiếp \(\Rightarrow\angle ABI=\angle F'EI\)

mà \(\angle ABI=\angle ASI\) (AIBS nội tiếp) \(=\angle ASE\)

\(\Rightarrow\angle F'EI+\angle AES=\angle ASE+\angle AES=90\)

\(\Rightarrow\angle F'EO=90\Rightarrow EF'\) là tiếp tuyến \(\Rightarrow\) đpcm

undefined

 

 

vũ nguyệt ánh
Xem chi tiết
Hoa lưu ly
7 tháng 4 2015 lúc 19:38

câu d:

Tam giác BCF nội tiếp (O;BC/2) có cạnh BC là đường kính

=> Tam giác BCF vuông tại F

=>góc BFC=90 độ

Xét 2 tam giác: tam giác CHF và tam giác CFB có:

góc C chung

góc CHF=góc CFB (=90 độ)

Do đó, tam giác CHF đồng dạng với tam giác CFB (g.g)

=> góc CFH=góc CBF (1)

Tứ giác ABFC nội tiếp (O;BC/2)

=> góc CFH=góc ABC (cùng chắn cung AC) (2)

Từ (1) và (2)=> góc CBF=góc ABC (3)

Mà tia BC nằm giữa tia AB và BF (4)

Từ (3) và (4)=> BC là tia phận giác của góc ABF (đpcm)

hứa lương
1 tháng 4 2018 lúc 19:41

Vẽ hình giúp mình với được không ạ 

huyendayy🌸
22 tháng 3 2020 lúc 20:19

A B E D C

Vì DE \(\perp\)BC => \(\widehat{EDB}=90^0\)

\(\widehat{BAC}=90^0\)( góc nội tiếp chắn nửa đường tròn )

Ta có : \(\widehat{EDB}+\widehat{BAE}=90^0+90^0=180^0\)

=> Tứ giác ABDE nội tiếp ( tổng 2 góc đối = 1800 )

Khách vãng lai đã xóa
GUraa
Xem chi tiết
GUraa
1 tháng 12 2021 lúc 15:11

MIK CẦN GẤP TRƯỚC 4h T_T