Cho đường tròn (O; R) có đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O; R), trên đường tròn (O; R) lấy điểm C sao cho .
a/ Chứng minh: Tam giác ABC vuông và tính độ dài AC, BC theo R.
b/ Tia BC cắt Ax tại M, kẻ CH AB tại H. Chứng minh: MC.BC = AH.AB
c/ Gọi I là trung điểm của CH, tia BI cắt AM tại E. Chứng minh: E là trung điểm của AM và EC là tiếp tuyến của đường tròn (O; R).
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Xét ΔABC vuông tại C có CH là đường cao
nên \(AH\cdot AB=AC^2\left(1\right)\)
Xét ΔMAB vuông tại A có AC là đường cao
nên \(MC\cdot BC=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)