tìm x biết (x+2)(x+3)-(x-2)(x+5)-6=0
Tìm x,biết
1) 3x^2 - 4x = 0
2) (x^2 - 5x) + x - 5 = 0
3) x^2 - 5x + 6 = 0
4) 5x(x-3) - x+3 = 0
5) x^2 - 2x + 5 = 0
6) x^2 + x -6 = 0
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
a) A=x(x^3+y)-x^2(x^2-y)-x^2(y-1) tại x=-10 và y=5
b) Tìm x biết 5x^3-3x^2+10x-6=0
c) Tìm x biết x^2+y^2-2x+4y+5=0
Tìm x, biết : a.,(x-y)^2-(x-3).(x+3)=6; b, x^2-5x=0;c,x^2+6x+5=0
tìm x biết a) 2x(x-1)-2x^2=-6 b) 2x(x-3)+5(x-3)=0
c) x^2+x-6=0
a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)
\(\Leftrightarrow2x^2-2x-2x^2=-6\)
\(\Leftrightarrow x=3\)
b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
1.Tìm số nguyên x biết
|x-3|=|x+7|
|3x+2|+|x-8|
|x+3|+|y-8|=0
|x-5|+|x-3|=0
(x-2)(x+6)=0
x(3x+6)=0
(2x-4)(x3-1)=0
(x-2)(x+7)>0
(x+3)(x+5)>0
(x+2)(x-5)<0
Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
tìm x thuộcz biết
0 < x -1 _< 2
3 _< x -2 <5
0 _< x -5 _<2
/ x / < 3
tìm x biết
15 - x + 17 = ( -6 ) + / -12 /
- / -5 / - ( -x ) + 4 = 3 - ( -25 )
3 - / 2 x + 1 / = ( - 5 )
1.
a)\(0< x-1\le2\)
Mà \(x\in Z\)
\(\Rightarrow x-1\in Z\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\in Z\)
Vậy x=2
Các phần khác bn làm tương tự nha
d)\(\left|x\right|< 3\)
\(\Rightarrow-3< x< 3\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)
2.
c)Các phần a,b bn tự làm nha
3-|2x+1|=(-5)
\(\Rightarrow\left|2x+1\right|=3-\left(-5\right)\)
\(\Rightarrow\left|2x+1\right|=3+5\)
\(\Rightarrow\left|2x+1\right|=8\)
\(\Rightarrow2x+1=8\) hoặc \(2x+1=-8\)
\(\Rightarrow2x=8-1\) \(\Rightarrow2x=-8-1\)
\(\Rightarrow2x=7\) \(\Rightarrow2x=-9\)
\(\Rightarrow x=\frac{7}{2}=3,5\notin Z\) \(\Rightarrow x=\frac{-9}{2}=-4,5\in Z\)
Vậy \(x\in\varnothing\)
Chúc bn học tốt
Tìm x biết :
b) (x − 5) · (x 2 − 16) = 0
c) (−5) · (x − 2015) < 0
d) (3 − x)(x + 6) > 0
\(b,\Leftrightarrow\left(x-5\right)\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow x-2015>0\Leftrightarrow x>2015\\ d,\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-x>0\\x+6>0\end{matrix}\right.\\\left\{{}\begin{matrix}3-x< 0\\x+6< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-6< x< 3\)
b: \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\\x=-4\end{matrix}\right.\)
Tìm x, biết :
a/ \(\dfrac{1}{3}x\left(x^2-4\right)=0\)
b/ \(x\left(x+5\right)=x+5\)
c/ \(x^3-\dfrac{1}{9}x=0\)
3)\(^2-\left(x+5\right)^2=0\)
e/ \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
f/ \(x\left(2x-3\right)-6+4x=0\)
g/ \(2\left(3x-2\right)^2-9x^2+4=0\)
h/ \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
i/ \(4x^2+9x+5=0\)
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)