Tìm tỉ số (a-b):(b-c) biết a:b=9:4 và b:c=5:3
cho a:b=9:4 và b:c = 5:3 . Tìm tỉ số (a-b) : (b-c)
giải cụ thể ha
tìm ba số a,b và c biết a:b=3:4;b:c=8:9 và c+a=60
dat \(\frac{a}{3}\)=\(\frac{b}{4}\)=k =>a=3k va b=4k
ma \(\frac{b}{8}\)=\(\frac{c}{9}\) nen \(\frac{4k}{8}\)=\(\frac{c}{9}\)=> c=\(\frac{9k}{2}\)
theo bai ra c+a=60 =>3k+\(\frac{9k}{2}\)=60 =>\(\frac{6k+9k}{2}\)=60 =>15k=120 => k= 8
nen a=3*8=24 b=4*8=32 c=\(\frac{9\cdot8}{2}\)=36
Bài 1: Cho a:b=9:4 và b:c=5:3. Tìm tỉ số (a-b):(b-c)
Bài 2: Cho (a+b):(b+c):(c+a)=6:7:8 và a+b+c=14. Hãy tìm c
Cho bốn số a;b;c;d .Biết rằng a:b=2:3; b:c=4:5;c:d=6:7.Tỉ lệ a:b:c:d là ?
mình cần gấp ạ !!!
Cho a:b = 9:4 và b:c = 5:3. Tính \(\frac{a-b}{b-c}\)
\(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)(1)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)(2)
Từ (1) và (2) => \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt : \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\) => a = 45k ; b = 20k ; c = 12k . Thay vào \(\frac{a-b}{b-c}\) ta được :
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{k\left(45-20\right)}{k\left(20-12\right)}=\frac{45-20}{20-12}=\frac{25}{8}\)
Cho a:b=9:4; b:c=5:3. Tính \(\frac{a-b}{b-c}\)
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left\{\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Cho bốn số a,b,c,d. Biết a:b=2:3, b:c=4:5, c:d=6:7 Ta tìm được a,b,c,d là :
a:b=9:4 và b:c=5:3. Tính\(\frac{a-b}{b-c}\)
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow a=45k,b=20k,c=12k\)
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
a:b = 9:4 ; b:c =5:3
tính : \(\dfrac{a-b}{b-c}\)
Giải:
Ta có: \(\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left[\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{25k}{8k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Theo bài ra:
\(\dfrac{a}{b}=\dfrac{9}{4}\Rightarrow a=\dfrac{9}{4}.b\)
\(\dfrac{b}{c}=\dfrac{5}{3}\Rightarrow c=b:\dfrac{5}{3}\)
Thay \(a=\dfrac{9}{4b};c=b:\dfrac{5}{3}\) vào \(\dfrac{a-b}{b-c}\), ta có:
\(\dfrac{\dfrac{9b}{4}-b}{b-\dfrac{3b}{5}}=\dfrac{\dfrac{9b}{4}-\dfrac{4b}{4}}{\dfrac{5b}{5}-\dfrac{3b}{5}}=\dfrac{5b}{4}:\dfrac{2b}{5}=\dfrac{5b}{4}.\dfrac{5}{2b}=\dfrac{25}{8}\)
Vậy: \(\dfrac{a-b}{b-c}=\dfrac{25}{8}\)