Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội t tam giác ABC. Khi đó tỉ số R/r có dạng a+b√c, c thuộc N c là số nguyên tố. Giá trị biểu thức T=a+b+c bằng
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số \(\dfrac{R}{r}\) bằng
Giải chi tiết cho mk vs
Tham khảo:
Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)
Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)
Xét tỉ số:
\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)
\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}\left(b.c\right)^2}=\dfrac{a.b^2\dfrac{\left(a+2b\right)}{2}}{b^4}=\dfrac{a.b^2\left(a+2b\right)}{2b^4}=\dfrac{a\left(a+2b\right)}{2b^2}\)
\(=\dfrac{b\sqrt{2}\left(b\sqrt{2}+2b\right)}{2b^2}=\dfrac{b^2\sqrt{2}\left(\sqrt{2}+2\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)
Tam giác ABC vuông tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Kho đó tỉ số R/r bằng
Kiểm tra lại đề nha bạn. Chắc chắn là thiếu giả thiết rồi đó.
Cho tam giác ABC nội tiếp đường O bán kính R. H là trực tâm của tam giác ABC. Gọi AD la đường kính của đường tròn O
A. CMR : BH = DC
B. CMR : H,G,O thẳng hàng.trong đó G là trong tâm tam giác ABC
C. AH căt (O;R) tại H'. Tinh bán kính đường tròn ngoại tiếp tam giác BH'C
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp. r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng: AB + AC = 2(R + r)
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= (BD + AD) + (AE + CE)
= AB + AC
Vậy AB = AC = 2(R + r)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC.
1. Chứng minh tứ giác ABEK nội tiếp được đường tròn.
2. Chứng minh CE.CB=CK.CA
3. Chứng minh góc OCA = góc BAE
4. Cho B,C cố định và A di động trên (C) nhưng vẫn thỏa mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R= 3cm
Cho tam giác ABCcó ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H (với E thuộc BC, K thuộc AC).
1. Chứng minh tứ giác ABEK nội tiếp được trong 1 đường tròn
2. Chứng minh CE.CB = CK.CA
3. Chứng minh: góc OCA= góc BAE
4. Cho B, C cố định và A di động trên (C) nhưng vẫn thoả mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn ( T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R=3cm
Cho (O; R) đường kính AB. M thuộc (O); (M khác A; B, MA < MB) . Trên tia MB lấy N sao cho MA = MN. Dựng hình vuông AMNP. Kéo dài MP cắt (O) ở C (C khác M ).
1) Chứng minh rằng tam giác ABC vuông cân.
2) Gọi I là tâm đường tròn nội tiếp tam giác AMB . Chứng minh rằng tứ giác AINB nội tiếp.
3) Chứng minh rằng tam giác BNC cân. Tính bán kính đường tròn ngoại tiếp AINB theo R .
1,
Tam giác ABC có CA=CB và ACB=90 => ACB vuông cân
Cho tam giác ABC có các cạnh BC = a, CA = b, AB = c. Gọi r là bán kính đường tròn nội tiếp, S là diện tích tam giác ABC.
a) Chứng minh : \(S=\dfrac{r\left(a+b+c\right)}{2}\)
b) Tính bán kính đường tròn nội tiếp của tam giác ABC. Biết tam giác ABC là tam giác cân có cạnh đáy bằng 16 cm, cạnh bên bằng 10 cm.
Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?
Cho tam giác cân có cạnh đáy a, cạnh bên b. Tính R và r (biết R là bán kính đường tròn ngoại tiếp tam giác ABC và r là bán kính đường tròn nội tiếp tam giác ABC)
#các_bạn_giúp_mừn_nhaaaa ^_^
\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)
\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)
\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (C) tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC.
1. Chứng minh tứ giác ABEK nội tiếp được đường tròn.
2. Chứng minh CE.CB=CK.CA
3. Chứng minh góc OCA = góc BAE
4. Cho B,C cố định và A di động trên (C) nhưng vẫn thỏa mãn điều kiện tam giác ABC nhọn; khi đó H thuộc 1 đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R= 3cm
giúp mình với ạ, mình cần gấp
Cách hack điểm hỏi đáp trên OLM: https://www.youtube.com/watch?v=sMvl8_N_N54