Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nonolive
Xem chi tiết
huongkarry
Xem chi tiết
Diệu Hoàng Minh
Xem chi tiết
Nuyen Thanh Dang
Xem chi tiết
Ngọc Vĩ
29 tháng 6 2016 lúc 9:02

Câu này hình như có người trả lời rồi mà bạn 

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
18 tháng 9 2020 lúc 12:39

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)

Khách vãng lai đã xóa
Diệu Hoàng Minh
Xem chi tiết
Nguyễn Thị Cẩm Nhi
Xem chi tiết
Phùng Minh Quân
3 tháng 11 2018 lúc 17:55

\(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}+\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+2}+\sqrt{x+3}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{\left(\sqrt{x+2019}+\sqrt{x+2020}\right)\left(\sqrt{x+2020}-\sqrt{x+2019}\right)}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{x+2020-x-2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+3}-\sqrt{x+2}+...+\sqrt{x+2020}-\sqrt{x+2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}=11+\sqrt{x+1}\)

\(\Leftrightarrow\)\(x+2020=121+22\sqrt{x+1}+x+1\)

\(\Leftrightarrow\)\(22\sqrt{x+1}=1898\)

\(\Leftrightarrow\)\(\sqrt{x+1}=\frac{949}{11}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=\frac{900601}{121}\\x+1=\frac{-900601}{121}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{900480}{121}\\x=\frac{-900722}{121}\end{cases}}\)

Chúc bạn học tốt ~ 

PS : sai thì thui nhá 

Trần Phúc
3 tháng 11 2018 lúc 20:21

Bài của bạn Quân làm đúng ùi nhưng mà căn thì không ra số âm nhé!

Trần Tuấn Đạt
Xem chi tiết
Nguyễn Hoàng Liên
Xem chi tiết
Lương Ngọc Anh
10 tháng 6 2016 lúc 14:57

ĐKXĐ:x khác 0

Trục căn thức ở mẫu ta được:

\(\left(\sqrt{x+3}-\sqrt{x+2}\right)+\left(\sqrt{x+2}-\sqrt{x+1}\right)+\left(\sqrt{x+1}-\sqrt{x}\right)=1.\)

<=> \(\sqrt{x+3}=\sqrt{x}+1\)

<=> \(x+3=x+2\sqrt{x}+1\)

=> 2\(\sqrt{x}=2\)

=> x=1

Hoàng Lê Bảo Ngọc
10 tháng 6 2016 lúc 15:09

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\left(DKXD:x\ge0\right)\)

\(\Rightarrow\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(x+3\right)-\left(x+2\right)}+\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(x+2\right)-\left(x+1\right)}+\frac{\sqrt{x+1}-\sqrt{x}}{\left(x+1\right)-x}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\Leftrightarrow x+3=\left(1+\sqrt{x}\right)^2\Leftrightarrow x+3=x+1+2\sqrt{x}\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(TMDK\right)\)

Vậy tập nghiệm của phương trình : \(S=\left\{1\right\}\)

Hoàng Phúc
Xem chi tiết
alibaba nguyễn
30 tháng 10 2016 lúc 6:56

Đặt \(\hept{\begin{cases}\sqrt{x-\frac{1}{x}}=a\\\sqrt{1-\frac{1}{x}}=b\end{cases}}\)

Ta có a2 - b2 = x - 1 từ đó ta có

a - b = (a2 - b2)/x

<=> (a - b)(\(1-\frac{a+b}{x}\)) = 0

<=> a = b

<=> x = 1

Võ Bùi Đức hoàng
22 tháng 10 2017 lúc 21:08

Bạn đó làm đúng rồi đò mình cũng có chung kết quả là  

X = 1