Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:18

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

to tien cuong
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:21

bạn viết thế này khó nhìn quá

Khách vãng lai đã xóa
Lê Đức Thành
26 tháng 11 2021 lúc 20:17

nhìn hơi đau mắt nhá bạn hoa mắt quá

Khách vãng lai đã xóa
Hùng Chu
Xem chi tiết
Nguyễn hoàng giáp
Xem chi tiết
Đặng Minh Thu
Xem chi tiết
Minh Lâm
Xem chi tiết
Xyz OLM
21 tháng 8 2023 lúc 0:11

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)

Hùng Chu
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
20 tháng 6 2021 lúc 9:44

a) đK: \(x\ne0;2\)

B = \(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{3x-4}{-4}=\dfrac{4-3x}{4}\) \(\dfrac{x-4+2x}{x\left(x-2\right)}:\dfrac{\left(x-2\right)\left(x+2\right)-x^2}{x\left(x-2\right)}\)

\(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{4-3x}{4}\)

b) Thay x = -2 (TMDK) vào B, ta có:

\(B=\dfrac{4-3.\left(-2\right)}{4}=\dfrac{4+6}{4}=\dfrac{5}{2}\)

c) Để \(\left|B\right|-2x=5\)

<=> \(\left|\dfrac{4-3x}{4}\right|-2x=5\)

TH1: \(x\le\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)

PT <=> \(\dfrac{4-3x}{4}-2x=5\)

<=> \(\dfrac{4-3x-8x}{4}=5\)

<=> \(4-11x=20\)

<=> x = \(\dfrac{-16}{11}\) (Tm)

TH2: \(x>\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)

PT <=> \(\dfrac{3x-4}{4}-2x=5\)

<=> \(\dfrac{3x-4-8x}{4}=5\)

<=> \(-5x-4=20\)

<=> \(x=\dfrac{-24}{5}\left(l\right)\)

d) Xét (2-x)B = \(\dfrac{\left(2-x\right)\left(4-3x\right)}{4}\)  = \(\dfrac{3x^2-10x+8}{4}\)

\(\dfrac{3\left(x-\dfrac{5}{3}\right)^2-\dfrac{1}{3}}{4}\)

Mà \(3\left(x-\dfrac{5}{3}\right)^2\ge\) 0

=> (2-x)B \(\ge\dfrac{\dfrac{-1}{3}}{4}=\dfrac{-1}{12}\)

Dấu "=" <=> x = \(\dfrac{5}{3}\left(tm\right)\)

e) Số nguyên âm lớn nhất là -1

Để B = -1

<=> \(\dfrac{4-3x}{4}=-1\)

<=> 4 - 3x = -4
<=> \(x=\dfrac{8}{3}\left(tm\right)\)

g) 

TH1: \(x\le\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)

BDT <=> \(\dfrac{4-3x}{4}< 2x-4\)

<=> \(4-3x< 8x-16\)

<=> \(x>\dfrac{20}{11}\left(l\right)\)

TH2: \(x>\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)

BDT <=> \(\dfrac{3x-4}{4}< 2x-4\)

<=> \(3x-4< 8x-16\)

<=> x > \(\dfrac{12}{5}\)

KHDK: \(x>\dfrac{12}{5}\)

Quỳnh Anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 10 2020 lúc 21:05

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

Khách vãng lai đã xóa
Quỳnh Anh
11 tháng 10 2020 lúc 21:08

Cảm ơn bn nhiều nhé!

Khách vãng lai đã xóa
Ngô Chi Lan
11 tháng 10 2020 lúc 21:57

Bài 1:

\(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)-6ab^2\)

\(=2a\left(a^2+3b^2\right)-6ab^2\)

\(=2a^3+6ab^2-6ab^2\)

\(=2a^3\)

Bài 2:

\(A=x^2+y^2-2x-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu"=" xảy ra khi \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy...

\(B=2x^2+8x+10\)

\(=2\left(x^2+4x+4\right)+2\)

\(=2\left(x+2\right)^2+2\ge2\forall x\)

Dấu"="xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Vậy...

Khách vãng lai đã xóa
giúp mik với
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 21:37

\(P=x^2+4xy+4y^2-4xy-4y^2+2x+3\)

\(=x^2+2x+3\)

EnderCraft Gaming
Xem chi tiết
Nguyễn Huy Tú
25 tháng 12 2020 lúc 16:05

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

Khách vãng lai đã xóa