cho tam giác ABC nhọn,đg tròn đg kính AB cắt AC,BC lần lượt tại D và E. gọi H là giao điểm của AE và BD.
Cmr:4 điểm C, D, H ,E cùng thuộc 1 đường tròn
a:
Gọi O là trung điểm của AB
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>BD vuông góc AC tại D
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE vuông góc BC tại E
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE nội tiếp
b: Xét ΔCAB có
AE,BD là đường cao
AE cắt BD tại H
=>H là trực tâm
=>CH vuông góc AB tại K
c: Xét ΔAKH vuông tại K và ΔAEB vuông tại E có
góc KAH chung
Do đó: ΔAKH đồng dạng với ΔAEB
=>AK/AE=AH/AB
=>AH*AE=AK*AB
Xét ΔBKH vuông tại K và ΔBDA vuông tại D có
góc KBH chung
Do đó: ΔBKH đồng dạng với ΔBDA
=>BK/BD=BH/BA
=>BK*BA=BH*BD
AH*AE+BH*BD
=AK*AB+BK*BA
=BA^2
a) ....................... =) C, D, H, E cùng thuộc 1 đường tròn.
b) ....................... =) CH ⊥ AB.
c) ....................... =) AH.AE + BH.BD = AB2.
a) Để chứng minh rằng bốn điểm C, D, H, E cùng thuộc một đường tròn, ta sử dụng định lí góc nội tiếp. Theo định lí này, nếu một góc nội tiếp của một đa giác nằm trên cùng một đường tròn, thì các đỉnh của góc đó cũng nằm trên đường tròn đó. Trong trường hợp này, ta có thể chứng minh rằng góc CHD và góc CED là góc nội tiếp của tam giác ABC, do đó bốn điểm C, D, H, E cùng thuộc một đường tròn.
b) Để chứng minh rằng CH vuông góc với AB, ta sử dụng định lí góc nội tiếp. Theo định lí này, nếu một góc nội tiếp của một đa giác nằm trên cùng một đường tròn, thì góc đó và góc ngoại tiếp của nó có tổng bằng 180 độ. Trong trường hợp này, ta có thể chứng minh rằng góc CHD và góc CED là góc nội tiếp của tam giác ABC, do đó tổng của hai góc này bằng 180 độ. Vì góc CHD và góc CED là hai góc bù nhau, nên CH vuông góc với AB.
c) Để chứng minh rằng AH⋅AE+BH⋅BD=AB^2, ta sử dụng định lí Ptolemy. Theo định lí này, trong một tứ giác nội tiếp đường tròn, tích của hai đường chéo bằng tổng tích của hai cạnh đối diện. Trong trường hợp này, ta có thể chứng minh rằng tứ giác AEBD là một tứ giác nội tiếp đường tròn, do đó AH⋅AE+BH⋅BD=AB^2.
Vậy, ta đã chứng minh được a), b), c) như yêu cầu.
1) cho △ABC nhọn (AB<AC), đg cao AH. vẽ đường tròn tâm (O) đg kính AB cắt AC tại N. gọi E là điểm đối xứng của H qua AC, EN cắt AB tại M và cắt (O) tại D. CMR:
a) AD=AE
b) HA là phân giác \(\widehat{MHN}\)
c) A, E, C, H, M cùng thuộc 1 đg tròn và CM, BN, AH đồng quy
giúp mk vs ah mk cần gấp
Cho tam giác ABC nhọn ( AB < AC ) .Đường tròn tâm O có đường kính BC cắt AB và AC lần lượt tại E và D . Gọi H là giáo điểm của CE và BD .
a ) AH cắt BC tại F : CMR AF vuông góc với BC
b) kẻ HK ⊥ OA tại K .C/m A,D,K,E cùng thuộc 1 đường tròn
Cho tam giác ABC nhọn, Đường tròn đường kính AB cắt các cạnh AC,BC lần lượt tại điểm D và E. Gọi H là giao điểm của AE và BD. Chứng minh rằng:
1. Bốn điểm C,F,H,E cùng thuộc một đường tròn
2.CH vuông góc AB
3. AH.AE+ BH.BD=AB^2
Mọi người giúp mình với ạ, cần gấp ạ, cảm ơn
Cho tam giác ABC nhọn ,đường tròn tâm O đường kính BC,cắt AB và AC lần lượt tại D và E .Gọi H là giao điểm của BE và Cd
a)C/m tam giác BEC vuông.Từ đó suy ra AH vuông BC
b)C/m 4 điểm A,D,H,E cùng thuộc 1 đường tròn .Xác định tâm của đường tròn đó
c)C/m IE là tiếp tuyến của đường tròn
Giải giùm nghen nha mọi người ^.^
Cho tam giác ABC có ba góc nhọn (AB<AC).Đường tròn tâm 0 đường kính bc cắt ab tại e cắt ac tại f .gọi h là giao điểm của bf và ce.
a)c.m 4 điểm A,E,H,F cùng thuộc 1 đường tròn
b)gọi i là trung điểm của ah .cm:OI vuông góc EF
c)Gọi D là giao điểm AH và BC .cm:HA.HD=HB.HF=HC.HE
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
cho tam giác ABC nhọn. Vẽ đường tròn tâm O dường kính BC cắt 2 cạnh AB,AC lần lượt tại E và D; BD và CE cắt nhau tại H
a,chứng minh rằng: H vuông góc với BC
b,chứng minh: bốn điểm A,H,E,D cùng thuộc 1 đường tròn và DE<BC
c,gọi M,N lần lượt chân các đường vuông góc kẻ từ B và C đến DE. Chứng minh rằng ME=ND
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: AH⊥BC
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE; AH cắt BC tại I.
c) Chứng minh tứ giác OIED nội tiếp.
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE; AH cắt BC tại I.
b) Chứng minh BE.BA = BI.BC