a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
Bài 1: Cho ∆ABC nhọn. Đường tròn tâm O đường kính BC cắt cạnh AB và AC tại D và E. Gọi H là giao điểm của CD và BE, I là trung điểm của AH. Chứng minh:
a) CD AB
b) AH BC
c) Bốn điểm A, D, H, E cùng thuộc một đường tròn.
Cho tam giác ABC (AB < AC), có ba góc nhọn nội tiếp trong đường tròn tâm O,Gọi H là giao điểm của đường cao AD, BM. Gọi N là giao điểm của CH và AB, I là trung điểm BC. K đối xứng H qua I.
a) C/m K thuộc đường tròn tâm O
b)C/m AK vuông góc với MN
Giúp em ạ cần gấp
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E a) chứng minh CD vuông góc với AB, BE vuông góc với AC b)gọi K là giao điểm BE và CD. chứng minh AK vuông góc với BC
Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)
cho tam giác abc có 3 góc nhọn, vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. BE và CD cắt nhau tại H
a)Chứng minh IO vuông góc DE
b)AH kéo dài cắt BC ở F. CMR: H là tâm đường tròn nội tiếp ΔDFE
cho tam giác đều ABC nội tiếp đường tròn (O;R) đường thẳng vuông góc với AC cắt (O) tại D cắt tiếp tuyến qua C của đường tròn O tại E. Gọi M là trung điểm của CE và F là giao điểm của AC và BD a) CM:AM là tiếp tuyến đường tròn(O) b) tứ giác AMCB là hình gì? Vì sao? c) CM: C,O,D thẳng hàng d) CM: BD//EF e) CM: B,D,C,F thuộc 1 đường tròn
cho đường tròn tâm o có đk ab và điểm m thuộc đường tròn. vẽ điểm n đối xứng với a qua m. đoạn thẳng bn cắt đường tròn o tại c. gọi e là giao điểm của đh thẳng ac và bm.
-cm tam giác amb vuông và e là trực tâm của tam giác anb.
-gọi f là điểm đối xứng với e qua m. chứng minh af là tiếp tuyến
-Chứng minh 2mf.mb=nc.nb
mình cần gấp
10) cho △ABC vuông tại C (AC>BC), đường cao CH.
a) biết BH= 4, AH= 9. tính CH
b) vẽ (O) đường kính AB, AC cắt tiếp tuyến tại B của (O) ở D. c/m: \(AB^2=AC.AD\)
c) gọi E là trung điểm của BD. c/m: CE là tiếp tuyến của (O)
d) gọi I là giao điểm của BC và OE. kẻ MI ⊥AB tại M. c/m: \(AC^2=AM^2-MB^2\)
giúp mk vs ạ mk cần gấp