Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Street Foods
Xem chi tiết
Xem chi tiết
Trần Hoài khánh Trang
Xem chi tiết
Nguyễn Nguyệt Hằng
21 tháng 3 2017 lúc 17:14

a.2010-|x-2010|=x

=>| x-2010|=2010-x

Ta có: | x- 2010 |= x-2010 hoặc |x-2010|= -(x-2010)

TH1: | x-2010|= x-2010

=>x-2010= 2010 - x

=> x+x= 2010+2010

=> 2x = 4020

=> x = 2010.

TH2: | x-2010|=-( x- 2010)

=> -x+2010= 2010-x

=>-x+x=2010-2010

=> 0=0(luôn đúng).

=>x=0

Vậy x= 2010 hoặc x=0

b. Ta có: \(\left(2x-1\right)^{2010}\) \(\ge0\)

\(\left(y-\dfrac{2}{5}\right)^{2010}\ge0\)

\(\left|x+y-z\right|\ge0\)

=> Để biểu thức trên xảy ra =>\(\left(2x-1\right)^{2010}=0\)

\(\left(y-\dfrac{2}{5}\right)^{2010}=0\)

\(\left|x+y-z\right|=0\)

* Với \(\left(2x-1\right)^{2010}=0\)

=> 2x -1 =0

=> 2x = 1

=> x= \(\dfrac{1}{2}\)

*Với \(\left(y-\dfrac{2}{5}\right)^{2010}=0\)

=> \(y-\dfrac{2}{5}=0\)

=> y= \(\dfrac{2}{5}\)

* Với \(\left|x+y-z\right|=0\)

=> x+y-z=0

=> \(\dfrac{1}{2}+\dfrac{2}{5}-z=0\)

=> \(\dfrac{9}{10}-z=0\)

=> \(z=\dfrac{9}{10}\)

Vậy \(x=\dfrac{1}{2}\); \(y=\dfrac{2}{5}\); \(z=\dfrac{9}{10}\)

Đỗ Yến Nhi
Xem chi tiết
dream XD
Xem chi tiết
Khánh Huyền $$$
Xem chi tiết
Lightning Farron
10 tháng 1 2017 lúc 23:06

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

Kuro Kazuya
10 tháng 1 2017 lúc 23:11

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)

Huỳnh Bảo Ngọc
12 tháng 1 2017 lúc 21:20

b) Theo mình bằng 4

vi
Xem chi tiết
TDeverMy
5 tháng 1 2015 lúc 20:02

Bạn viết sai đề rồi bạn, bài như thế này thì ko làm được

goteks Son
25 tháng 2 2019 lúc 19:42

phải là (x-z)\(^{2100}\)mới đúng. Bạn ghi sai rồi

Mai Trung Nguyên
25 tháng 2 2019 lúc 19:53

Ta có : \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0.\)

Vì:\(\left(3x-5\right)^{2006}\ge0;\left(y^2-1\right)^{2008}\ge0;\left(x-z\right)^{2010}\ge0\)

\(\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=5\\y^2=1\\x=z\end{cases}}\)

Ta có :\(3x=5\)\(\Leftrightarrow x=\frac{5}{3}\)

\(\Rightarrow z=\frac{5}{3}\)

Ta có: \(y^2=1\)\(\Leftrightarrow y=1;-1\)

\(Vậy:\)\(x=z=\frac{5}{3}\);\(y=1;-1\)

P/s: Mình thấy vẫn giải được nha

YangJiNguyen
Xem chi tiết
Võ Gia Hưng
Xem chi tiết