Tính bán kính đường tròn ngoại tiếp tam giác ABC vuông tại A với AB = 5cm, AC = 12cm.
\(\Delta ABC\) vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\) (Pytago)
\(=5^2+12^2\)
\(=169\)
\(\Rightarrow BC=13\left(cm\right)\)
Gọi R là bán kính cần tìm
\(\Rightarrow\) Bán kính đường tròn ngoại tiếp \(\Delta ABC\):
\(R=\dfrac{BC}{2}=\dfrac{13}{2}=6,5\left(cm\right)\)
Cho tam giác ABC vuông tại A. Vẽ đường tròn ngoại tiếp bán kính R và nội tiếp bán kính r của tam giác đó. Biết R = 5cm; r = 2cm. Tính AB + AC.
Tam giác ABC vuông tại A => R=\(\frac{BC}{2}\) => BC=10
Ta có: r =\(\frac{2S}{AB+BC+AC}\) => \(\frac{AB.AC}{AB+AC+10}\) =2
AB2+AC2=100 (Pytago)
Giải pt ra, ta được: (AB;AC)=(6;8)
=> AB+AC=14
cho tam giác ABC(góc A =90 độ) có AB = 5cm, AC 12cm. Xác định tâm bán kính đường tròn ngoại tiếp tam giác ABC
giải giúp mk với ạ
Áp dụng Pitago: \(BC=\sqrt{AB^2+AC^2}=13\)
Do tam giác ABC vuông tại A \(\Rightarrow BC\) là đường kính
\(\Rightarrow R=\dfrac{1}{2}BC=\dfrac{13}{2}=6,5\left(cm\right)\)
Cho tam giác ABC vuông tại A, AB=6, BC=10, AC=8. Tính bán kính của đường tròn O' tiếp xúc với AB, AC và tiếp xúc trong với đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC vuông tại A, có AB = 15cm; AC = 20cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC
A. R = 25
B. R = 25/2
C. R = 15
D. R = 20
Chọn đáp án B
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền BC, bán kính là R = BC/2
Theo định lý Pytago ta có nên bán kính R = 25/2
Cho tam giác ABC vuông tại A .Gọi R,r theo thứ tự là bán kính đường tròn ngoại tiếp và nội tiếp tam giác.Biết R=5cm,r=2cm.Tính AB+AC
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Xác định tâm đường tròn ngoại tiếp tam giác ABC và tính bán kính đường tròn đó
Tâm đường tròn ngoại tiếp tam giác ABC nằm trên trung điểm BC
=> Tâm đường tròn là điểm M
tính bán kính nữa bạn ơi
Áp dụng định lý pytago vào tgiac vuông ABC ta có :
BC=10
Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:
BC : 2 = 10:2=5cm
Cho tam giác ABC cân tại A. Tính bán kính đường tròn ngoại tiếp tam giác ABC biết AB=10cm, BC=12cm.
Cho tam giác ABC cân tại A. Tính bán kính đường tròn ngoại tiếp tam giác ABC biết AB=10cm, BC=12cm.
Ta có công thức tính diện tích tam giác khi biết các cạnh của tam giác và bán kính đường tròn ngoại tiếp là:
\(S=\frac{abc}{4R}\); với R là bán kính đường tròn ngoại tiếp và; a, b, c lần lượt là các cạnh của tam giác.
Bài giải:
Ta có tam giác AB=AC =10 cm
Kẻ đường cao BH
=> BH= CH= 12:2 =6cm
Áp dụng định lí Pitago
=> AH^2 =AC^2-HC^2=10^2-6^2=64
=> AH = 8 cm
=> Diện tích tam giác ABC: S= AH.BC:2=48 (cm^2)
Mặt khác \(S=\frac{AB.AC.BC}{4R}\Rightarrow R=\frac{AB.AC.BC}{4S}=\frac{10.10.12}{4.48}=6,25\left(cm\right)\)
Vậy bán kính đường tròn ngoại tiếp bằng 6,25 cm.
Cho tam giác ABC, biết góc góc A bằng 600, AC = 8cm, AB = 5cm. Tính bán kính R đường tròn ngoại tiếp tam giác ABC.
A. 4,4
B. 4,04
C. 3,84
D. 5,02