rút gọn: x^2+^y2+z^2-2xy-2zx-2yz/x^2-2xy-y^2-z^2
57. Rút gọn phân thức \(B=\dfrac{x^2+y^2+z^2+2xy+2yz+2zx}{x^2-y^2-z^2-2yz}\)
\(B=\dfrac{\left(x+y+z\right)^2}{x^2-\left(y^2+2yz+z^2\right)}=\dfrac{\left(x+y+z\right)^2}{x^2-\left(y+z\right)^2}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x-y-z\right)}=\dfrac{x+y+z}{x-y-z}\)
Rút gọn phân thức x^2+y^2+z^2-2xy+2xz-2yz/x^2-2xy+y^2-z^2
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
\(\frac{x^2+y^2+z^2-2xy-2yz+2zx}{x^2-2xy+y^2-z^2}\)
\(\frac{x^2+y^2+z^2-2xy-2yz+2zx}{x^2-2xy+y^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}=\frac{x-y+z}{x-y-z}\)
Chứng minh đẳng thức:
a, ( x - y - z )2 = x2 + y2 + z2 - 2xy + 2yz - 2zx
b, ( x + y - z )2 = x2 + y2 + z2 + 2xy - 2yz - 2zx
a.\(\left(x^2-y^2-z^2\right)=\left(x-y\right)^2-2z\left(x-y\right)+z^2=x^2-2xy+y^2-2zx+2zy+z^2\)
b.\(\left(x+y-z\right)^2=\left(x+y\right)^2-2z\left(x+y\right)+z^2=x^2+2xy+y^2-2zy-2zx+z^2\)
CMR
(x-y-z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2zx
\(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)
\(=\left(x-y\right)^2-2z\left(x-y\right)+z^2\)
\(=x^2-2xy+y^2-2xz+2yz+z^2\)
\(=x^2+y^2+z^2-2xy+2yz-2xz\)\(\left(đpcm\right)\)
Áp dụng HĐT (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca đó bạn.
Ta có: (x - y + z)^2 >= 0
<=> x^2 + y^2 + z^2 - 2xy + 2xz - 2yz >= 0
<=> x^2 + y^2 + z^2 >= 2xy - 2xz + 2yz
chung minh rang
x^2 + y^2 +z^2 + 2xy + 2yz + 2zx = ( x+y+z)^2
Xét vế trái ta có: x^2 + y^2 + z^2 + 2xy + 2yz + 2xz
=x^2 + 2xy + y^2 + 2yz + 2xz +z^2
=(x+y)^2 + 2(x+y)z +z^2
=(x+y+z)^2
rút gọn phân thức
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\frac{x-y+z}{x-y-z}\)
chox,y,z>0 và x+y+z=3 CMR
P=\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\ge1\)
Quy đồng mẫu thức mỗi phân thức sau:
a) 2 x 2 x 3 + 6 x 2 + 12 x + 8 , 3 x x 2 + 4 x + 4 và 5 2 x + 4 với x ≠ − 2 ;
b) x x 2 − 2 xy + y 2 − z 2 , y y 2 − 2 yz + z 2 − x 2 và z z 2 − 2 zx + x 2 − y 2
Với x ≠ y + z ; y ≠ x + z ; z ≠ x + y .