tìm số nguyên tố P.Biết P+10;P+20 cũng la số nguyên tố
Tìm số nguyên tố p sao cho p+10 và p+20 cũng là số nguyên tố
Tìm số nguyên tố p sao cho p+2 và p+2 cũng là số nguyên tố
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
2.
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007.
Vậy r(x) = 1007x + 1007.
3.
Với a,b > 0, dùng bất đẳng thức CauChy thì có
(a + b)/4 >= can(ab)/2 (1),
2(a + b) + 1 >= 2can[2(a + b)].
Dùng bất đẳng thức Bunhiacopski thì có
can[2(a + b)] >= can(a) + can(b);
thành thử
2(a + b) + 1 >= 2[can(a) + can(b)] (2).
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)],
hay
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a).
Dấu bằng đạt được khi a = b = 1/4.
a) Nếu P = 2 thì P + 10 = 2 + 10= 12 > 3 và chia hết cho 3 suy ra P + 10 là HS ( loại )
Nếu P = 3 thì+) + 10 = 3 + 10 = 13 > 3 và ko chia hết cho 3 suy ra P + 10 là SNT( chọn)
+) + 20 = 3 + 20 = 23 > 3 và chia hết cho 3 suy ra P + 20 là SNT ( chọn )
Nếu P là SNT > 3 suy ra P có dạng 3k+1, 3k+2
+) Khi P = 3k + 1 thì P + 20 = 3k + 1 + 20 = 3k + 21 = 3.(k + 7) > 3 và chia hết cho 3 suy ra P + 20 là HS ( loại )
+) Khi P = 3k + 2 thì P + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) > 3 và chia hết cho 3 suy ra P + 10 là Hs ( loại )
Vậy P = 3
Đề bài câu b phải là P + 2 và P - 2 nhé!
a . Tìm các số nguyên tố p sao cho p + 11 cũng là số nguyên tố .
b . Tìm các số nguyên tố p sao cho p + 8 và p + 10 cũng là số nguyên tố .
1. tìm số nguyên tố p,q sao cho
a) p+10,p+14 là các sô nguyên tố
b) q+2,q+10 là các số nguyên tố
a)nếu p=2 thì :
p+10=2+10=12 là hợp số(loại)
nếu p=3 thì:
p+10=3+10=13 là số nguyên tố
p+14=3+14=17 là số nguyên tố
(thỏa mãn)
nếu p>3 thì:
p sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:p=3k+1
nếu p=3k+1 thì:
p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:p=3k+2
nếu p=3k+2 thì:
p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu p>3 thì không có giá trị nào thỏa mãn
vậy p=3
b)nếu q=2 thì :
q+10=2+10=12 là hợp số(loại)
nếu q=3 thì:
q+2=3+2=5 là số nguyên tố
q+10=3+10=13 là số nguyên tố
(thỏa mãn)
nếu q>3 thì:
q sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:q=3k+1
nếu q=3k+1 thì:
q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:q=3k+2
nếu q=3k+2 thì:
q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu q>3 thì không có giá trị nào thỏa mãn
vậy q=3
Tìm số nguyên tố P sao cho:
a) P+2 và P+10 là số nguyên tố
b) P+10 và P+20 là số nguyên tố
Tìm số nguyên tố p, q sao cho
a) p +10, p +14 là các số nguyên tố.
b) q + 2, q +10 là các số nguyên tố.
a.\(p\in\left\{3\right\}\)
b.\(q\in\left\{3\right\}\)
\(a,\) p có dạng 3k+1;3k+2 hoặc 3k
\(TH1:p=3k+1\\ \Rightarrow p+14=3k+1+14=3k+15⋮3\left(loại\right)\\ TH2:p=3k+2\\ \Rightarrow p+10=3k+12⋮3\left(loại\right)\\ TH3:p=3k\Rightarrow p+10=3k+10\left(chọn\right)\\ \Rightarrow p+14=3k+14\left(chọn\right)\)
Vậy p có dạng 3k thỏa mãn
\(\Rightarrow p=3\)
Bạn làm tương tự với câu b nha
Tìm số nguyên tố p, q sao cho
a) p +10, p +14 là các số nguyên tố.
b) q + 2, q +10 là các số nguyên tố.
tìm số nguyên tố phong để
a,p+2 và p+10 cũng là số nguyên tố
b,p+10 và p+20 cũng là số nguyên tố
\(a)\)Vì \(p\)là số nguyên tố
\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)
\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )
\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )
\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:
\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )
\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )
Vậy \(p=3\)\(\left(đpcm\right)\)
\(b)\)Với \(p=2\Rightarrow p+10=2+10=12\)( ko là số nguyên tố ) \(\Rightarrow\) ( loại )
Với \(p=3\Rightarrow p+10=3+10=13\)
\(\Rightarrow\)\(p+20=20+3=23\)( đều là các số nguyên tố ) \(\Rightarrow\) ( chọn )
Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow\)\(p=3k+1\left(k\in N\right)\)
\(\Rightarrow\)\(p+20=3k+1+20\)
\(=\)\(3k+21=3\left(k+7\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\))
\(\Rightarrow\)\(3\left(k+7\right)\)là hợp số ; hay \(p+20\)là hợp số \(\Rightarrow\)( loại )
Nếu \(p\)chia 3 dư 2 \(\Rightarrow\)\(p=3k+2\left(k\in N\right)\)
\(\Rightarrow\)\(p+10=3k+2+10\)
\(=\)\(3k+12=3\left(k+4\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\))
\(\Rightarrow\)\(3\left(k+4\right)\)là hợp số; hay \(p+10\)là hợp số \(\Rightarrow\)( loại )
Vậy \(p=3\)thỏa mãn đề bài \(\left(đpcm\right)\)
a) Tìm p là số tự nhiên sao cho p+1;p+2;p+4 đều là số nguyên tố.
b) Tìm số nguyên tố p sao cho 2p2+1 cũng là số nguyên tố.
c) Tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
tìm số nguyên tố sao cho
a)p+2,p+10 là số nguyên tố
b)p+10,p+20 là số nguyên tố
c)p+2,p+6,p+8,p+12,p+14 là số nguyên tố
a, p=3
b, p=3
c, p=5
Chúc bạn học giỏi nha!!!
a) Nếu p=3k+1 thì p+2=3k+1+2=3K+3 chia hết cho 3
Nếu p=3k+2 thì p+10=3k+2+10=3k+12 chia hết cho 3
Do đó p=3
b) Xét 3k+1 và 3k+2 như phần trên
Đáp số: p=3
c) Nếu p=5k+1 thì p+14=3k+1+14=3k+15 chia hết cho 3, là hợp số
p=5k+2 thì p+8=5k+2+8=5k+10, chia hết cho 5 nên là hợp số
p=5k+3 thì p+2=5k+3+2=5k+5 chia hết cho 5, là hợp số
Do đó, p là số nguyên tố nhỏ hơn hoặc = 5
p ko thể là 2 vì p+2 là hợp số
p ko là 3 vì 3+6=9, là hợp số
Với p=5 thì tất cả nguyên tố