Cho đường tròn (O) và điểm C nằm nên ngoài đường tròn. Qua C kẻ tiếp tuyên CA, CB với đường tròn (A, B là tiếp điểm). Vẽ đường tròn (O') đi qua C và tiếp xúc với AB tại B, cắt (O) ở M. CMR đường thẳng AM đi qua TĐ của BC.
Cho đường tròn (O) và điểm C nằm nên ngoài đường tròn. Qua C kẻ tiếp tuyên CA, CB với đường tròn (A, B là tiếp điểm). Vẽ đường tròn (O') đi qua C và tiếp xúc với AB tại B, cắt (O) ở M. CMR đường thẳng AM đi qua TĐ của BC.
Cho đường tròn (O), từ điểm m ngoài đường tròn kẻ 2 tiếp tuyến MA và MB. Đường tròn đi qua M tiếp xúc Với AB tại B cắt đường tròn (O) tại C. Chứng mình CA đi qua trung điểm MB
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn. Kẻ một đường thẳng qua A và không đi qua tâm O, cắt đường tròn tại 2 điểm phân biệt M, N (M nằm giữa A và N). Từ A vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Đường thẳng BC cắt AO tại H. Gọi I là trung điểm của MN.
a) Chứng minh tứ giác ACOI là tứ giác nội tiếp.
b) Chứng minh OI.OE = OH.OA = AC2.
c) Tính theo R độ dài của OA biết diện tích của tứ giác ABOC bằng 3R2.
b bic làm bài này hok z
giúp mik vs ạ
Cho điểm A nằm bên ngoài đường tròn (O). Qua A, kẻ hai tiếp tuyến tiếp xúc đường tròn (O) tại B và C. Gọi M là điểm di động luôn nằm giữa A và C. Qua M, kẻ tiếp tuyến thứ hai tiếp xúc đường tròn (O) tại I (I khác C). Tia MI cắt đoạn thẳng AB tại N.
a) Khi M di động, chứng tỏ tam giác AMN có chu vi không đổi.
b) Qua O, kẻ đường thẳng vuông góc với OA; đường thẳng vừa kẻ lần lượt cắt các tia AC, AB tại P và Q. Chứng minh OP = OQ.
c) Chứng minh tam giác POM đồng dạng với tam giác QNO.
d) chứng minh tổng PM + QN lớn hơn hoặc bằng PQ.
Cho đường tròn tâm O đường kính AB và một điểm C chạy trên một nửa đường tròn. Vẽ đường tròn (7) tiếp xúc với (O) tại C và tiếp xúc với đường kính AB tại D
a, Nêu cách vẽ đường tròn (I) nói trên
b, Đường tròn (I) cắt cắt CA, CB lần lượt tại các điểm thứ hai là M, N. Chứng minh M, I, N thẳng hàng
c, Chứng minh đường thẳng CD đi qua điểm chính giữa nửa đường tròn (O) không chứa C
a, Vẽ tiếp tuyến tại C cắt đường AB ở P. Phân giác C P B ^ cắt OC ở I. Vẽ đường tròn tâm I bán kính IC, đó là đường tròn cần tìm
b, Do A C B ^ = 90 0 nên M C N ^ = 90 0
=> MN là đường kính của (I) => ĐPCM
c, Chứng minh được MN//AB nên ID ^ MN => M D ⏜ = N D ⏜ hay CD là tia phân giác A C B ^ => Đpcm
Từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AM với đường tròn (M là tiếp điểm). Kẻ dây MN vuông góc với AO tại H. Kẻ đường thẳng đi qua A cắt đường tròn tại B,C(điểm B nằm giữa A và C). Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại K, gọi I là trung điểm của BC. a) Chứng minh 4 điểm B,C,O,K cùng thuộc một đường tròn. b) Chứng minh AN là tiếp tuyến của đường tròn (O) c) Chứng minh OI.OK=ON² d) Chứng minh M,N,K thẳng hàng.
a: Xét tứ giác OBKC có \(\widehat{OBK}+\widehat{OCK}=90^0+90^0=180^0\)
nên OBKC là tứ giác nội tiếp
=>O,B,K,C cùng thuộc một đường tròn
b: Ta có: ΔOMN cân tại O
mà OA là đường cao
nên OA là phân giác của góc MON
Xét ΔMOA và ΔNOA có
OM=ON
\(\widehat{MOA}=\widehat{NOA}\)
OA chung
Do đó: ΔMOA=ΔNOA
=>\(\widehat{OMA}=\widehat{ONA}\)
=>\(\widehat{ONA}=90^0\)
=>AN là tiếp tuyến của (O)
c: Xét (O) có
KB,KC là tiếp tuyến
Do đó: KB=KC
=>K nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OK là đường trung trực của BC
=>OK\(\perp\)BC tại I và I là trung điểm của BC
Xét ΔOBK vuông tại B có BI là đường cao
nên \(OI\cdot OK=OB^2\)
=>\(OI\cdot OK=ON^2\left(3\right)\)
d: Xét ΔNOA vuông tại N có NH là đường cao
nên \(OH\cdot OA=ON^2\left(4\right)\)
Từ (3) và (4) suy ra \(OI\cdot OK=OH\cdot OA\)
=>\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)
Xét ΔOIA và ΔOHK có
\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)
\(\widehat{HOK}\) chung
Do đó: ΔOIA đồng dạng với ΔOHK
=>\(\widehat{OIA}=\widehat{OHK}\)
=>\(\widehat{OHK}=90^0\)
mà \(\widehat{OHM}=90^0\)
nên K,H,M thẳng hàng
mà M,H,N thẳng hàng
nên K,M,N thẳng hàng
Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn . Qua M vẽ hai tiếp tuyến MA , MB với đường tròn (O) trong đó A , B là hai tiếp điểm sao cho AMB = 90 độ . Qua điểm C trên cung nhỏ AB kẻ tiếp tuyến với đường tròn (o) cắt MA , MB tại P vs Q .
CMR : 1/3 ( MA + MB ) < PQ < 1/2 ( MA + MB)
o l m . v n