tìm GTLN của biểu thức B= -2x2+5x-8
Tìm GTLN của các biểu thức sau:
A = 6x - 3x2 - 7
B = 5x - 2x2 + 1
C = 2x2 - 8x + 13
D = x2 - 3x + 5
\(A=-3x^2+6x-7=-3\left(x^2-2x+1-1\right)-7\)
\(=-3\left(x-1\right)^2-4\le-4\)Dấu ''='' xảy ra khi x = 1
\(B=-2x^2+5x+1=-2\left(x^2-\dfrac{5}{2}x\right)+1\)
\(=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{25}{16}\right)+1\)
\(=-2\left(x-\dfrac{5}{4}\right)^2+\dfrac{33}{8}\le\dfrac{33}{8}\)Dấu ''='' xảy ra khi x = 5/4
C;D chỉ có GTNN thôi bạn nhé \(C=2x^2-8x+13=2\left(x^2-4x+4-4\right)+13\)
\(=2\left(x-2\right)^2+5\ge5\)Dấu ''='' xảy ra khi x = 2
\(D=x^2-3x+5=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+5\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)Dấu ''='' xảy ra khi x = 3/2
d: Ta có: \(D=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Tìm GTNN hoặc GTLN của các biểu thức sau:
a) A = x2 + 3x + 4
b) B = 2x2 - x + 1
c) C = 5x - x2 + 4
d) D = x2 + 5y2 - 2xy + 4y + 3
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
Tìm GTNN hoặc GTLN của các biểu thức sau:
a) 2x2 - x + 1
b) 5x - x2 + 4
c) x2 + 5y2 - 2xy + 4y + 3
a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)
b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)
c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)
b: ta có: \(-x^2+5x+4\)
\(=-\left(x^2-5x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
cho biểu thức P=2x-2xy-2x2-y2.Tìm GTLN của biểu thức P, khi P= GTLN thì x, y bằng mấy
Ta có: \(P=2x-2xy-2x^2-y^2\)
\(P=-x^2-2xy-y^2-x^2+2x\)
\(P=-\left(x^2+2xy+y^2\right)-\left(x^2-2x+1\right)+1\)
\(P=-\left(x+y\right)^2-\left(x-1\right)^2+1\)
\(P=-\left[\left(x+y\right)^2+\left(x-1\right)^2\right]+1\le1\forall x;y\)
Vậy GTLN của P là 1 khi x=-1; y=1.
Cho biểu thức C = x + 2 x 2 - 5 x + x - 2 x 2 + 5 x : x 2 + 10 x 2 - 25
b) Tìm x để giá trị của biểu thức C bằng 2.
b) Vậy C = 2 ⇒ (2/x) = 2
⇒ x = 1(thỏa mãn các điều kiện trên).
Cho biểu thức 5 x + 2 x 2 - 10 x + 5 x - 2 x 2 + 10 x . x 2 - 100 x 2 + 4 . Tìm điều kiện của x để giá trị của biểu thức được xác định
Giá trị của biểu thức xác định khi mỗi giá trị của phân thức trong biểu thức đều được xác định.
Khi đó điều kiện xác định:
Cho biểu thức 5 x + 2 x 2 - 10 x + 5 x - 2 x 2 + 10 x . x 2 - 100 x 2 + 4 . Tìm điều kiện của x để giá trị của biểu thức được xác định.
Giá trị của biểu thức xác định khi mỗi giá trị của phân thức trong biểu thức đều được xác định.
Khi đó điều kiện xác định:
tìm GTNN của biểu thức A= 2x2-8x+1
Tìm GTLN của B = -5x2-4x+1
cảm ơn nha^^
a: Ta có: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=2
Tìm GTLN, GTNN của biểu thức chứa dấu GTTĐ.
1-2|2-2x2|
|2-2x^2|>=0
=>-2|2x^2-2|<=0
=>-2|2x^2-2|+1<=1
Dấu = xảy ra khi 2x^2-2=0
=>x^2=1
=>x=1 hoặc x=-1