Ta có: \(B=-\left(2x^2-5x+8\right)\)
\(\Rightarrow B=-\left[2x^2-2.2x.\frac{5}{4}+\left(\frac{5}{4}\right)^2\right]+\frac{27}{4}\)
\(\Rightarrow B=-\left(2x-\frac{5}{4}\right)^2+\frac{27}{4}\)
\(\Rightarrow B=27-\left(2x-\frac{5}{4}\right)^2\)
Vì \(\left(2x-\frac{5}{4}\right)^2\ge0\Rightarrow B\le\frac{27}{4}\)
Dấu "=" xảy ra khi \(2x-\frac{5}{4}=0\Rightarrow x=\frac{5}{8}\)
Vậy Bmax=\(\frac{27}{4}\) khi \(x=\frac{5}{8}\)
-B = 2x^2 - 5x + 8 = 2.(x^2 - 5/2 x + 25/16 ) + 39/8 = 2.(x-5/4)^2 + 39/8 >= 39/8
=> B <= -39/8
Dấu "=" xảy ra <=> x-5/4 = 0 <=> x=5/4
Vậy Max B = -39/8 <=> x=5/4
mình làm cho nhé :
-2x2+5x-8
=-(2x2-5x)-8
= -2(x2-2.\(\frac{5}{2}\).x +(\(\frac{5}{2}\))2 - (\(\frac{5}{2}\))2) -8
-2(x-\(\frac{5}{2}\))2-\(\frac{9}{2}\)
Nhận xét : -2(x-\(\frac{5}{2}\))2 <hoạc bằng 0 ; -2(x-\(\frac{5}{2}\))2 -\(\frac{9}{2}\)>hoặc bàng 0
=>B(min)=\(\frac{9}{2}\)dấu = xảy ra khi x =\(\frac{5}{2}\)công sức của