Giải tam giác ABC vuông tại A, biết AB=14cm, góc C bằng 30 độ
(Giải tầm giác vuông biết độ dài một cạnh và một góc nhọn)cho tam giác ABC vuông tại C có BC bằng 4cm và A bằng 30 độ a.hãy giải tam giác ABC B.tính tỉ số lượng giác của GÓC A
a: \(\widehat{B}=60^0\)
AB=8cm
\(AC=4\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau:
a) BC = 10cm,góc C= 30 độ. b) AB=8cm và góc B=30 độ ?
a: \(\widehat{B}=90^0-30^0=60^0\)
XétΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
nên AB=5cm
=>\(AC=5\sqrt{3}\left(cm\right)\)
b: \(\widehat{C}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
hay \(BC=16\sqrt{3}\left(cm\right)\)
=>\(AC=8\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A,Biết BC=12cm,góc C bằng 30 độ tính độ dài AB?
Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
75 cũng đoán bừa
Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
Ta có : \(sinC=\frac{AB}{BC}=\frac{1}{2}\) nên \(BC=2AB=6\)
Suy ra , \(AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\) và góc \(B=60^0\)
****
xét tam giác vuông ABC:
góc A+góc B+góc c=180 độ
90 độ+góc B+30 độ=180 độ
120 độ+góc B=180 độ
góc B=180-120
góc B=60 độ
tick nha
Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
Ta co tinh chat canh doi dien voi goc 30do thi =1/2 canh huyen.o bai nay thi ta giai nhu sau.goi BC=a=>AB=a/2.ap dung PYTAGO =>(a/2)^2+100=a^2=>a= 11,55
Cho tam giác ABC vuông tại A biết góc C = 30 độ, AB = 9cm
a) Giải tam giác ABC (tính các góc, các cạnh còn lại của tam giác)
b)Kẻ đường cao AH của tam giác, Tính AH, BH
c) Tính độ dài phân giác AD của tam giác ABC
a, ^B = ^A - ^C = 900 - 300 = 600
\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm
b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm
\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm
c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)
\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm
\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm
Áp dụng định lí tam giác AHD vuông tại H ta có :
\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)
tự giải nhé ><
a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2
Câu 4: a, Giải tam giác ABC vuông tại B. Biết góc A = 30°,AC= 10cm. b, Giải tam giác ABC vuông tại C. Biết góc B = 30°,AC =5cm
b: AB=10cm
\(BC=5\sqrt{3}\left(cm\right)\)
\(\widehat{C}=60^0\)
tam giác ABC vuông tại A, AH là đường cao,AC bằng căn bậc 3 và góc C=30 độ. Giải tam giác ABC
Xét ΔABC vuông tại A có
\(\widehat{C}+\widehat{B}=90^0\)
nên \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(=\sqrt{3}\cdot\dfrac{\sqrt{3}}{3}=1\left(cm\right)\)
\(\Leftrightarrow BC=2\left(cm\right)\)
Hãy giải tam giác ABC vuông tại A biết: a:) BC= 16cm , góc C= 30 độ
góc B=90-30=60 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>AB/16=1/2
=>AB=8cm
=>\(AC=8\sqrt{3}\left(cm\right)\)