Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loveyoongi03
Xem chi tiết
Pham Van Hung
21 tháng 10 2018 lúc 8:06

     \(5x^2+2y^2-6xy+16x-8y+16=0\)

\(\Rightarrow10x^2+4y^2-12xy+32x-16y+32=0\)

\(\Rightarrow\left(9x^2-12xy+4y^2\right)+\left(24x-16y\right)+16+\left(x^2+8x+16\right)=0\)

\(\Rightarrow\left(3x-2y\right)^2+2.\left(3x-2y\right).4+4^2+\left(x+4\right)^2=0\)

\(\Rightarrow\left(3x-2y+4\right)^2+\left(x+4\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x-2y+4=0\\x+4=0\end{cases}\Rightarrow}\hept{\begin{cases}-12-2y+4=0\\x=-4\end{cases}\Rightarrow\hept{\begin{cases}y=-4\\x=-4\end{cases}}}\)

Vậy \(x=y=-4\)

Lê Ngọc Linh
Xem chi tiết
FL.Hermit
11 tháng 8 2020 lúc 16:26

Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!

a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)

<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)

<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\)    (1) 

TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)

=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\)      (2)

TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

VẬY \(\left(x;y\right)=\left(3;2\right)\)

Khách vãng lai đã xóa
Girl 2k3
Xem chi tiết
Laura
26 tháng 10 2019 lúc 19:45

\(a)xy+3x-2y=11\)

\(\Leftrightarrow xy+3x-2y-6=5\)

\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)

\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)

Khách vãng lai đã xóa
Laura
26 tháng 10 2019 lúc 20:05

\(b)2x^2-2xy+x-y=12\)

\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)

\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)

\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)

\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Vì 2x+1 luôn lẻ

\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Khách vãng lai đã xóa
Laura
26 tháng 10 2019 lúc 20:23

\(c)2xy-10y-x=13\)

\(\Leftrightarrow x\left(2y-1\right)-2y.5+5=18\)

\(\Leftrightarrow x\left(2y-1\right)-5\left(2y-1\right)=18\)

\(\Leftrightarrow\left(2y-1\right)\left(x-5\right)=18\)

\(\Leftrightarrow2y-1;x-5\inƯ\left(18\right)\)

\(\RightarrowƯ\left(18\right)\in\left\{-1;1;-2;2;-3;3;-6;6;-9;9;-18;18\right\}\)

Vì 2y-1  luôn lẻ

=>2y-1 thuộc {-1;1;-3;3;-9;9}

=> Làm  tương tự nhé

\(e)xy-2y^2+8y-3x=13\)

\(\Leftrightarrow xy-2y^2+2y+6y-3x-6=7\)

\(\Leftrightarrow y\left(x-2y+2\right)+3\left(-x+2y-2\right)=7\)

\(\Leftrightarrow y\left(x-2y+2\right)-3\left(x-2y+2\right)=7\)

\(\Leftrightarrow\left(x-2y+2\right)\left(y-3\right)=7\)

Tự khai triển như các câu trên.

Mình đg bận nên ko lm đc hết câu.

Khách vãng lai đã xóa
Nguyễn Cẩm Ly
Xem chi tiết

Vì \(3x=8y\Rightarrow\frac{x}{8}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{2y}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)

\(\Rightarrow x=2.8=16\)                                                  Thử lại : \(3x=16\times3=48\)

\(\Rightarrow y=2.6\div2=6\)                                                           \(8y=6\times8=48\)

Vậy  \(x=16;y=6\)

Khách vãng lai đã xóa
Hoàng Thanh Huyền
31 tháng 10 2019 lúc 12:59

Vì \(3x=2y\)nên:

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)

Ta thấy: \(\frac{y}{3}=\frac{2y}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

          \(\frac{x}{2}=\frac{y}{3}=\frac{2y}{6}=\frac{x-2y}{6-4}=\frac{4}{2}=2\)

\(\Rightarrow x=2.2=4\)

\(\Rightarrow y=2.3=6\)

Khách vãng lai đã xóa
Đông Phương Lạc
31 tháng 10 2019 lúc 14:23

Theo bài ra ta có: 

\(3x=8y\)\(\Rightarrow\frac{x}{8}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{2y}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau và giả thiết ta có:

\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.8=16\\2y=2.6=12\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=16\\y=6\end{cases}}\)

Khách vãng lai đã xóa
Trần Tuấn Anh
Xem chi tiết
Đinh Gia Tuấn Dũng
Xem chi tiết
Nhất Tiêu Bác Quân
Xem chi tiết
Huỳnh Quang Sang
14 tháng 8 2020 lúc 9:42

a) M + (5x2 - 2xy) = 6x2 + 9xy - y2

=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)

=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = (6x2 - 5x2) + (9xy + 2xy) - y2 = x2 + 11xy - y2

b) Sửa đề lại đi nhé

c) (25x2y - 13x2y + y3) - M = 11x2y - 2y2

=> M = (25x2y - 13x2y + y3) - (11x2y - 2y2)

=> M = 25x2y - 13x2y + y3 - 11x2y + 2y2

=> M = x2y + y3 + 2y2

d) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7

Khách vãng lai đã xóa
Xyz OLM
14 tháng 8 2020 lúc 9:43

a) Ta có : M = 6x2 + 9xy - y2 - (5x2 - 2xy)

                    =  6x2 + 9xy - y2 - 5x2 + 2xy

                    = x2 + 11xy - y2

b) Ta có M = x2 - 7xy + 8y2 - (3xy - 24y2)

                 = x2 - 7xy + 8y2 - 3xy + 24y2

                  = x2 - 10xy + 32y2

c) Ta có M = 25x2.y- 13x2y + y3 - (11x2y - 2y2)

                  = 25x2.y- 13x2y + y3 - 11x2y + 2y2

                 = x2y + y3 + 2y2

d) Ta có M = -(12x4 - 15x2y + 2xy2 + 7)

                 =  -12x4 + 15x2y - 2xy2 - 7

Khách vãng lai đã xóa
Đinh Cẩm Tú
Xem chi tiết
HT2k02
11 tháng 4 2021 lúc 0:49

\(\left(\dfrac{x}{x+2y}-\dfrac{x+2y}{2y}\right)\left(\dfrac{x}{x-2y}-1+\dfrac{8y^3}{8y^3-x^3}\right)=\dfrac{2xy-\left(x+2y\right)^2}{2y\left(x+2y\right)}\left(\dfrac{2y}{x-2y}+\dfrac{8y^3}{\left(2y-x\right)\left(4y^2+2yx+x^2\right)}\right)=\dfrac{-\left(x^2+2xy+4y^2\right)}{2y\left(x+2y\right)}\cdot\dfrac{2y\left(4y^2+2yx+x^2\right)-8y^3}{\left(x-2y\right)\left(x^2+2xy+4y^2\right)}=\dfrac{-\left(x^2+2xy+4y^2\right)2y\left(4y^2+2xy+x^2-4y^2\right)}{2y\left(x+2y\right)\left(x-2y\right)\left(x^2+2x+4y^2\right)}=\dfrac{-\left(x^2+2xy\right)}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{x}{2y-x}\)

Moon
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 14:42

Ta có: \(\dfrac{x-1}{6}=\dfrac{-2y+3}{30}\)

\(\Leftrightarrow\dfrac{3x-3}{18}=\dfrac{-8y+12}{120}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{3x-3}{18}=\dfrac{-8y+12}{120}=\dfrac{3x-3+8y-12}{18-120}=\dfrac{2-15}{-102}=\dfrac{13}{102}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{x-1}{6}=\dfrac{13}{102}\\\dfrac{3-2y}{30}=\dfrac{13}{102}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=\dfrac{13}{17}\\-2y+3=\dfrac{65}{17}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{30}{17}\\-2y=\dfrac{14}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{30}{17}\\y=\dfrac{-7}{17}\end{matrix}\right.\)

Bùi Võ Đức Trọng
27 tháng 7 2021 lúc 14:44

Ta có: 5x - 5 = 3 - 2y

=> 5x+2y = 8

=> 20x + 8y = 32

Mà 3x +8y = 2

=> 17x = 30

=> x = \(\dfrac{30}{7}\)

=> y = ... giải tiếp nha bạn.

Xin 1 like nha bạn. Thx bạn