Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
và x+y+z=16
Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
và x+y+z=16
Có\(\dfrac{3x-5y}{4}=\dfrac{4z+=-3x}{5}=\dfrac{5y-4z}{6}=\dfrac{3x-5y+4z-3x+5y-4z}{4+5+6}=\dfrac{0}{15}=0\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-5y}{4}=0\Rightarrow3x-5y=0\Rightarrow3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}\\\dfrac{5y-4z}{6}=0\Rightarrow5y-4z=0\Rightarrow5y=4z\Rightarrow\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y+z}{20+12+15}=\dfrac{16}{47}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{16}{47}\Rightarrow x=\dfrac{320}{47}\)
\(\Rightarrow\dfrac{y}{12}=\dfrac{16}{47}\Rightarrow y=\dfrac{192}{47}\)
\(\Rightarrow\dfrac{z}{15}=\dfrac{16}{47}\Rightarrow z=\dfrac{240}{47}\)
Vậy \(\left(x;y;z\right)=\left(\dfrac{320}{47};\dfrac{192}{47};\dfrac{240}{47}\right)\)
Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
Tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5y-4z}{6}\)
tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5x-4z}{6}\)
tìm x,y,z biết
\(\dfrac{3x-5y}{4}=\dfrac{4z+3x}{5}=\dfrac{5x-4z}{6}\)
Cho \(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\) và x - y + z = 200. Tìm x, y, z
\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}\\\dfrac{4x-3y}{5}=\dfrac{3z-5x}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\left(4x-3y\right)=5\left(5y-4z\right)\\4\left(4x-3y\right)=5\left(3z-5x\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-9y-25y+20z=0\\16x-12y-15z+25x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\end{matrix}\right.\)
mà x-y+z=200 nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36x-102y+60z=0\\164x-48y-60z=0\\60x-60y+60z=12000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}200x-150y=0\\-24x-42y=-12000\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-3y=0\\4x+7y=2000\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-10y=-2000\\4x-3y=0\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\4x=3y\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=200\\x=\dfrac{3}{4}y=150\\150-200+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\x=150\\z=250\end{matrix}\right.\)
a) 3x = 5y = 7z và x+ y + z = 10
b) 6x = 5y ; 7y = 8z và 3x + 2y + 4z = 12
c) x : y : z = 1: 2 : 3 và x\(^3\) + y\(^3\) + 2\(^3\) = 36
d) \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và 3x\(^3\) + y\(^3\) = 51
giúp mik vs rùi mik tick cho
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
Tìm x,y,z biết :
1) \(x:y:z=3:5:\left(-2\right)\) và \(5x-y+3z=-16\)
2) \(\dfrac{x}{2}=\dfrac{y}{-3};\dfrac{z}{3}=\dfrac{y}{4}\) và \(x+y+z=5,2\)
3) \(2x=3y;7z=5y\) và \(3x-7y+5z=30\)
4) \(3x=4y=5z\) và \(x-\left(y+z\right)=-21\)
5) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và \(2x+3y-z=50\)