(4 x\(^2\))\(^{^8}\) : (4 x\(^2\))\(^{^4}\) : (4 x\(^2\))\(^{^2}\)
2. Tìm x biết:
a)2(x+2)(x+4)\dfrac{2}{\left(x+2\right)\left(x+4\right)} + 4(x+4)(x+8)\dfrac{4}{\left(x+4\right)\left(x+8\right)} + 6(x+8)(x+14)\dfrac{6}{\left(x+8\right)\left(x+14\right)} = x(x+2)(x+14)\dfrac{x}{\left(x+2\right)\left(x+14\right)}
b)x2023\dfrac{x}{2023} + x+12022\dfrac{x+1}{2022} x+22021\dfrac{x+2}{2021} +...+ x+20221\dfrac{x+2022}{1} + 2023 = 0.
Gíup mình giải 2 bài này với!
Cảm ơn các bạn rất nhiều!!!
2 phần ( x + 2 ). ( x + 4 ) + 4 phần ( x + 4 ) .( x + 8 ) + 6 phần( x + 8 ) .( x + 14 ) = x phần( x + 2 ) ( x + 14 ) với ( x ∉ { − 2 , − 4 , − 8 , − 14 } ) .
Phân tích đa thức thành nhân tử:
1.45+x^3-5*x^2-9*x
2.x^4-2*x^3-2*x^2-2*x+3
3.x^4-5*x^2+4
4.x^4+64
5.x^5+x^4+1
6.(x^2+2*x)*(x^2+2*x+4)+3
7.(x^3+4*x+8)^2+3*x*(x^2+4*x+8)+2*x^2
8. x^3*(x^2-7)^2-36*x
9.x^5+x+1
10. x^8+x^4+1
11. x^5-x^4-x^3-x^2-x-2
12. x^9-x^7-x^6-x^5+x^4+x^3+x^2-1
13. (x^2-x)^2-12*(x^2-x)+24
1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)
\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)
3, \(x^4-5x^2+4\)
Đặt \(x^2=t\left(t\ge0\right)\)ta có :
\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)
\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
`Answer:`
1. `45+x^3-5x^2-9x`
`=x^3+3x^2-8x^2-24x+15x+45x`
`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`
`=(x+3).(x^2-8x+15)`
`=(x+3).(x^2-5x-3x+15)`
`=(x-3).(x-5).(x-3)`
2. `x^4-2x^3-2x^2-2x-3`
`=x^4+x^3-3x^3+x^2+x-3x-3`
`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`
`=(x+1).(x^3-3x^2+x-3)`
`=(x+1).[x^3 .(x-3).(x-3)]`
`=(x+1).(x-3).(x^2+1)`
3. `x^4-5x^2+4`
`=x^4-x^2-4x^2+4`
`=x^2 .(x^2-1)-4.(x^2-1)`
`=(x^2-1).(x^2-4)`
`=(x-1).(x+1).(x-2).(x+2)`
4. `x^4+64`
`=x^4+16x^2+64-16x^2`
`=(x^2+8)^2-16x^2`
`=(x^2+8-4x).(x^2+8+4x)`
5. `x^5+x^4+1`
`=x^5+x^4+x^3-x^3+1`
`=x^3 .(x^2+x+1)-(x^3-1)`
`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`
`=(x^2+x+1).(x^3-x+1)`
6. `(x^2+2x).(x^2+2x+4)+3`
`=(x^2+2x)^2+4.(x^2+2x)+3`
`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`
`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`
`=(x^2+2x+1).(x^2+2x+3)`
`=(x+1)^2 .(x^2+2x+3)`
7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`
`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`
`=x^6+8x^4+19x^3+30x^2+88x+64`
8. `x^3 .(x^2-7)^2-36x`
`=x[x^2.(x^2-7)^2-36]`
`=x[(x^3-7x)^2-6^2]`
`=x.(x^3-7x-6).(x^3-7x+6)`
`=x.(x^3-6x-x-6).(x^3-x-6x+6)`
`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`
`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`
`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`
`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`
`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`
9. `x^5+x+1`
`=x^5-x^2+x^2+x+1`
`=x^2 .(x^3-1)+(x^2+x+1)`
`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`
`=(x^2+x+1).(x^3-x^2+1)`
10. `x^8+x^4+1`
`=[(x^4)^2+2x^4+1]-x^4`
`=(x^4+1)^2-(x^2)^2`
`=(x^4-x^2+1).(x^4+x^2+1)`
`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`
`=[(x^2+1)^2-x^2].(x^4-x^2+1)`
`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)
11. ` x^5-x^4-x^3-x^2-x-2`
`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`
`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`
`=(x-2).(x^4+x^3+x^2+x+1)`
12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`
`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`
`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`
`=(x^2-1).(x^7-x^4-x^3+1)`
`=(x-1)(x+1)(x^3-1)(x^4-1)`
`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`
`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`
`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`
13. `(x^2-x)^2-12(x^2-x)+24`
`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`
`=(x^2-x+6)^2-12`
`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`
Tính nhẩm
3 x 4 = 2 x 6 = 4 x 3 = 5 x 6 =
3 x 7 = 2 x 8 = 4 x 7 = 5 x 4 =
3 x 5 = 2 x 4 = 4 x 9 = 5 x 7 =
3 x 8 = 2 x 9 = 4 x 4 = 5 x 9 =
Học sinh nhẩm và ghi kết quả như sau:
3 x 4 = 12 2 x 6 = 12 4 x 3 = 12 5 x 6 = 30
3 x 7 = 21 2 x 8 = 16 4 x 7 = 28 5 x 4 = 20
3 x 5 = 15 2 x 4 = 8 4 x 9 = 36 5 x 7 = 35
3 x 8 = 24 2 x 9 = 18 4 x 4 = 16 5 x 9 = 45
3 x4 = 12
3 x7 = 21
3 x5 = 15
3 x8 =24
2 x 6= 12
2 x8 = 16
2 x4 =8
2 x9 =18
4 x3 =12
4 x7 =28
4 x9 =36
4 x4 =16
5 x6 =30
5 x4 =20
5 x7 =35
5 x9 =45
3 x 4 = 12 2 x 6 = 12 4 x 3 = 12 5 x 6 = 30
3 x 7 = 21 2 x 8 = 16 4 x 7 = 28 5 x 4 = 20
3 x 5 = 15 2 x 4 = 8 4 x 9 = 36 5 x 7 = 35
3 x 8 = 24 2 x 9 = 18 4 x 4 = 16 5 x 9 = 45
Tính nhẩm:
a) 2 x 2 = ...... 3 x 3 = ......
2 x 4 = ...... 3 x 5 = ......
2 x 6 = ...... 3 x 7 = ......
2 x 8 = ...... 3 x 9 = ......
4 x 4 = ...... 5 x 5 = ......
4 x 2 = ...... 5 x 7 = ......
4 x 6 = ...... 5 x 9 = ......
4 x 8 = ...... 5 x 3 = ......
b) 200 x 4 = ...... 300 x 2 = ......
200 x 2 = ...... 300 x 3 = ......
400 x 2 = ...... 500 x 1 = ......
100 x 4 = ...... 100 x 3 = ......
a) 2 x 2 = 4 3 x 3 = 9
2 x 4 = 8 3 x 5 = 15
2 x 6 = 12 3 x 7 = 21
2 x 8 = 16 3 x 9 = 27
4 x 4 = 16 5 x 5 = 25
4 x 2 = 8 5 x 7 = 35
4 x 6 = 24 5 x 9 = 45
4 x 8 = 32 5 x 3 = 15
b) 200 x 4 = 800 300 x 2 = 600
200 x 2 = 400 300 x 3 = 900
400 x 2 = 800 500 x 1 = 500
100 x 4 = 400 100 x 3 = 300
Trả lời 1 câu thôi nhé em 100 nhân 4 bằng 400 nhá em
a) 2 x 2 =4 ...... 3 x 3 = ..9....
2 x 4 = ....8.. 3 x 5 = ...15...
2 x 6 = ....12.. 3 x 7 = .21.....
2 x 8 = ..16.... 3 x 9 = ..27....
4 x 4 = ...16... 5 x 5 = ...25...
4 x 2 = ...8... 5 x 7 = ..35....
4 x 6 = .....24. 5 x 9 = .45.....
4 x 8 = ..32.... 5 x 3 = .15.....
b) 200 x 4 = 800...... 300 x 2 =600 ......
200 x 2 = ..400.... 300 x 3 = 900......
400 x 2 = .....800. 500 x 1 = ..500....
100 x 4 = ....400.. 100 x 3 = .300.....
Tinh gia tri cua phan so: A= 2 x 3 + 2 x 4 x 8 + 4 x 8 x 16 + 8 x 16 x 32/ 3x 4 + 2 x 6 x 8 + 4 x 12 x 16 + 8 x 24 x 32
Tìm x, biết:
2/(x+2).(x+4) + 4/(x+4).(x+8) + 8/(x+8).(x+16) = x/(x+2).(x+14)
Phân tích đa thức thành nhân tử.
1)x^4+2x^3-4x-4
2)(x+2)(x+4)(x+6)(x+8)+16
3)(x^2+x).(x^2+x+1)-6
4)(x^2+4x+8)^2+3x(x^2+4x+8)
ta có
\(5x=-3y=4z\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)
bài 3:
a) x - 3/4 = 6 x 3/8 b) 7/8 : x = 3 - 1/2 c) x + 1/2 x 1/3 = 3/4
d) 3/2 x 4/5 - x = 2/3 e) X x 3 1/3 = 3 1/3 : 4 1/4 f) 5 2/3 : x = 3 2/3 - 2 1/2
a) \(x-\dfrac{3}{4}=6\times\dfrac{3}{8}\)
\(x-\dfrac{3}{4}=\dfrac{9}{4}\)
=> \(x=\dfrac{9}{4}+\dfrac{3}{4}=3\)
b) \(\dfrac{7}{8}:x=3-\dfrac{1}{2}\)
\(\dfrac{7}{8}:x=\dfrac{5}{2}\)
=> \(x=\dfrac{7}{8}:\dfrac{5}{2}=\dfrac{7}{20}\)
c) \(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
=> \(x=\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{7}{12}\)
d) \(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{6}{5}-x=\dfrac{2}{3}\)
=> \(x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{8}{15}\)
e) \(x\times3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\)(?)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
=> \(x=\dfrac{40}{51}:\dfrac{10}{3}=\dfrac{4}{17}\)
f) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\)
\(\dfrac{17}{3}:x=\dfrac{5}{3}\)
=> \(x=\dfrac{17}{3}:\dfrac{5}{3}=\dfrac{17}{5}\)
a: =>x-3/4=18/8=9/4
=>x=9/4+3/4=12/4=3
b: =>7/8:x=5/2
=>x=7/8:5/2=7/8*2/5=14/40=7/20
c: x+1/2*1/3=3/4
=>x+1/6=3/4
=>x=3/4-1/6=9/12-2/12=7/12
d: =>12/10-x=2/3
=>6/5-x=2/3
=>x=6/5-2/3=18/15-10/15=8/15
e: =>x*10/3=10/3:17/4=10/3*4/17
=>x=4/17
f: =>17/3:x=13/3-5/2=26/6-15/6=11/6
=>x=17/3:11/6=17/3*6/11=34/11
8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
ĐKXĐ:x≠0
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2\) \(-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
⇔\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)= \left(x+4\right)^2\)
⇔\(8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
⇔\(\left(x+4\right)^2=16=4^2=\left(-4\right)^2\)
⇔\(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)
Vậy \(S=\left\{-8\right\}\)