Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ahwi
Xem chi tiết
Ahwi
1 tháng 3 2018 lúc 13:45

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

mê zai đẹp
1 tháng 3 2018 lúc 13:46

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

alibaba nguyễn
1 tháng 3 2018 lúc 13:47

1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)

\(=-11-\left(3x-2\right)^2\le-11< 0\)

Câu b và câu 2 tương tự

Thuytiev
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 11:23

a: Sửa đề: 1/4x+x^2+2

x^2+1/4x+2

=x^2+2*x*1/8+1/64+127/64

=(x+1/8)^2+127/64>=127/64>0 với mọi x

=>ĐPCM

b: 2x^2+3x+1

=2(x^2+3/2x+1/2)

=2(x^2+2*x*3/4+9/16-1/16)

=2(x+3/4)^2-1/8 

Biểu thức này ko thể luôn dương nha bạn

c: 9x^2-12x+5

=9x^2-12x+4+1

=(3x-2)^2+1>=1>0 với mọi x

d: (x+2)^2+(x-2)^2

=x^2+4x+4+x^2-4x+4

=2x^2+8>=8>0 với mọi x

Hà Anh Nguyễn Lê
Xem chi tiết
Phong Linh
8 tháng 8 2018 lúc 16:54

giá trị âm nhá

A = 2x - x2 - 2 

= -(x2 - 2x + 2)

= -(x2 - 2x +  1 + 1)

= -(x2 - 2x + 1) - 1

= -(x - 1)2 - 1 

Vì (x - 1)2 \(\ge0\forall x\)

=> -(x - 1)2 \(\le0\forall x\)

Vậy A = -(x - 1)2 - 1 \(\le1< 0\forall x\)

Phạm Tuấn Đạt
8 tháng 8 2018 lúc 17:00

\(a=2x-x^2-2\)

\(a=-x^2+2x-2\)

\(a=-x^2+2x-1-1\)

\(a=-\left(x-1\right)^2-1\le-1\)

Dấu "=" xảy ra khi x = 1

Vậy x luôn âm

Thúy An
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 9 2021 lúc 19:24

\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)

inuyasha
23 tháng 9 2021 lúc 19:24

E=(x2+2x+1)+14=(x+1)2+14

ta có (x+1)2 >=0 với mọi x

suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x

hoangtuvi
Xem chi tiết
Lấp La Lấp Lánh
17 tháng 9 2021 lúc 11:38

a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)

Tuấn Hưng
Xem chi tiết
Thành Vinh Lê
9 tháng 8 2018 lúc 19:50

a)(3x-1)^2=1>0

b)(x+1/2)^2=3/4>0

c)1/2[(2x+1)^2+1]>0

Bùi Đức Anh
9 tháng 8 2018 lúc 20:52

a﴿﴾3x‐1﴿^2=1>0

b﴿﴾x+1/2﴿^2=3/4>0

c﴿1/2[﴾2x+1﴿^2+1]>0

Thành Vinh Lê
10 tháng 8 2018 lúc 11:19

coppy siêu vừa thôi nha

Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Huy Tú
4 tháng 9 2021 lúc 21:51

Câu hỏi của ĐỖ THỊ HƯƠNG TRÀ - Toán lớp 8 - Học trực tuyến OLM

mình làm rồi nhé, bạn kham khảo link 

Khách vãng lai đã xóa
T R A N G A N H T R Ầ N
Xem chi tiết
Phạm Đức Nam Phương
23 tháng 6 2017 lúc 13:41

a) 

\(=x^2+2.1,5x+1.5^2+0,75\)

\(=\left(x+1.5\right)^2+0,75\)

Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương

b) 

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)

Lập luận tương tự câu a), được biểu thức luôn dương

c)

\(=x^2+2xy+y^2+x^2-2x+1+1\)

\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)

Lập luận tương tự

Tạ Minh Khoa
Xem chi tiết
»βέ•Ҫɦαηɦ«
9 tháng 7 2017 lúc 20:50

Ta có : 9x2 - 6x + 5

= (3x)2 - 6x + 1 + 4

= (3x - 1)2 + 4

Mà : (3x - 1)\(\ge0\forall x\)

Nên : (3x - 1)2 + 4 \(\ge4\forall x\)

Suy ra : (3x - 1)2 + 4 \(>0\forall x\)

Vậy biểu thức sau luôn luôn dương 

Tạ Minh Khoa
9 tháng 7 2017 lúc 20:53

thanks bạn nha ^^

Bui Trinh Minh Ngoc
Xem chi tiết
Thanh Ngân
10 tháng 7 2018 lúc 13:34

\(x^4+x^2+2=\) \(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

                          \(=\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>0\)với mọi x

\(\left(x+3\right)\left(x-11\right)+2014=\) \(x^2-11x+3x-33+2014\)

                                                         \(=\) \(x^2-8x+1981\)

                                                          \(=\)  \(x^2-2.x.4+16+1965\)

                                                           \(=\)  \(\left(x-4\right)^2+1965>0\)với mọi x