Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Linh Chi
Xem chi tiết
Lê Song Thanh Nhã
16 tháng 7 2015 lúc 20:38

Ta có 3 trường hợp:

+ n chia hết cho 3

+ n chia 3 dư 1

+ n chia 3 dư 2

~ Với trường hợp n chia hết cho 3, ta có:

n^2 chia hết cho 3

n chia hết cho 3

2012 không chia hết cho 3

=> n^2 + n +2012 không chia hết cho 3 (1)

~ Với trường hợp n chia 3 dư 1, ta có:

n^2 chia 3 dư 1

n chia 3 dư 1

2012 chia 3 dư 2

=> n^2+n+2012 không chia hết cho 3 (2)

~ Với trường hợp n chia 3 dư 2, ta có:

n^2 chia 3 dư 1

n chia 3 dư 2

2012 chia 3 dư 2

=>  n^2+n+2012 không chia hết cho 3 (3)

Từ (1); (2); (3) ta đc điều cần chứng minh

 

Hoàng Thị Linh Chi
Xem chi tiết
Hoàng Thị Linh Chi
Xem chi tiết
Nguyễn Khánh Duy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 6 2021 lúc 22:53

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2017 lúc 2:47

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

Thái Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 14:59

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

Kiều Vũ Linh
29 tháng 10 2023 lúc 15:07

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 6 2017 lúc 4:18

Thực hiện nhân đa thức và thu gọn

2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.

nguyenvanhoang
Xem chi tiết
hong van Dinh
11 tháng 10 2015 lúc 20:09

Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2

Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2

Vậy (n+4)(n+5) chia hết cho 2

 

Tran Dinh Phuoc Son
11 tháng 12 2016 lúc 17:56

Câu a 

Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2

Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai

Vậy (n+4)(n+5) chia hết cho 2

Câu b

Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp

Gọi ƯCLN(n+2012; n+2013)=d

Vì ƯCLN(n+2012;n+2013)=d 

=> n+2012 chia hết cho d, n+2013 chia hết cho d

Mà n+2013-n+2012=1=> d=1

Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau

nguyễn thị anh thơ
Xem chi tiết
Nhóc_Siêu Phàm
28 tháng 11 2017 lúc 19:36

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

Bùi Khánh Huy
28 tháng 11 2017 lúc 19:36

Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.

=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.

Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11

mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121

=> (2n+3)^2+11  ko chia hết chia het cho 121