Tính :
A= -1 - 1/3 - 1/6 - 1/10 - 1/15 - ... 1/1225
A=\(-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-......-\frac{1}{1225}\)
Tính
A = -1 - 1/3 - 1/6 - 1/10 - 1/15 - ... - 1/1225
A = -(1 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/1225)
A = -(2/2 + 2/6 + 2/12 + 2/20 + 2/30 + ... + 2/2450)
A = -2.(1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/49.50)
A = -2.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/49 - 1/50)
A = -2.(1 - 1/50)
A = -2.49/50
A = -49/25
Tính giá trị biểu thức:
B= -1 - 1/3 - 1/6 - 1/10 - 1/15 - ... - 1/1225
\(B=-1-\frac{1}{3}-\frac{1}{6}-...-\frac{1}{1225}\)
\(=-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)
\(=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=-2\left(1-\frac{1}{50}\right)=-2\cdot\frac{49}{50}=-\frac{49}{25}\)
\(B=-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)
\(B=-2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\right)\)
\(B=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(B=-2\left(1-\frac{1}{50}\right)\)
\(B=-2\cdot\frac{49}{50}\)
\(B=-\frac{49}{25}\)
Tính \(A=-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)
Tính \(A=-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)
Tính \(A=-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)
Tính \(A=-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)
D = -1- 1/3- 1/6- 1/10- 1/15- .....- 1/1225 = ?
D = -1-1/3-1/6-1/10-...-1/1225
Suy ra : D/2=-1/2-1/6-1/12-....-1/2450
Mà 1/2=1/(1.2)=1-1/2; 1/6=1/(2.3)=1/2-1/3;...1/2450=1/(49.50)=...
D/2= -(1-1/2)-(-1/2-1/3)-...-(1/49-1/50)
D/2= -1+1/2-1/2+1/3-....-1/49+1/50
D/2= -1+1/50=-49/50
D=(-49/50).2=-98/50
k nha
-1 - 1 phần 3 - 1 phần 6 - 1 phần 10 - 1 phần 15 - ... - 1 phần 1225
\(-1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{15}-...-\dfrac{1}{1225}=?\)
A = -1-\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\)-\(\dfrac{1}{10}\)-\(\dfrac{1}{15}\)-...-\(\dfrac{1}{1225}\)
= -1-(\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+\(\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\))
Đặt B = \(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+\(\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\)
Ta có : B = 2(\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+...+\(\dfrac{1}{2450}\))
= 2(\(\dfrac{1}{2\text{×}3}\)+\(\dfrac{1}{3\text{×}4}\)+\(\dfrac{1}{4\text{×}5}\)+\(\dfrac{1}{5\text{×}6}\)+...+\(\dfrac{1}{49\text{×}50}\))
= 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\)
= 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{50}\))
= 2×\(\dfrac{24}{50}\)
= \(\dfrac{24}{25}\)
Thay B vào A ta có :
A = -1-\(\dfrac{24}{25}\)
=> A = \(\dfrac{-49}{25}\)
Cho mik một tick nhé thankss
B\(=-1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{15}-...-\dfrac{1}{1225}\)
\(B=-\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{1225}\right)\)
\(\dfrac{1}{2}B=-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{2450}\right)\)
\(\dfrac{1}{2}B=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{2.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}\right)\)
\(\dfrac{1}{2}B=-\left(1-\dfrac{1}{50}\right)\)
\(\dfrac{1}{2}B=-1+\dfrac{1}{50}\)
\(\dfrac{1}{2}B=\dfrac{-49}{50}\)
\(B=\dfrac{-49}{25}\)
\(B=-\dfrac{2}{2}-\dfrac{2}{6}-\dfrac{2}{12}-...-\dfrac{2}{2450}\)
\(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)
\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
=-2*49/50
=-49/25