Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LÊ TRẦN BÁCH
Xem chi tiết
Nguyễn Bảo Liêm
2 tháng 12 2023 lúc 21:02

325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?

ミ★Zero ❄ ( Hoàng Nhật )
4 tháng 12 2023 lúc 10:48

1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên 

= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )

= > 2 ( x + 3 ) - 5 chia hết cho x + 3 

=> -5 chia hết cho x + 3 

hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)

Đến đây em tự tìm các giá trị của x

2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )

= > - 6 chia hết cho x + 5 

= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

....

3,  ( x - 1 ) ( y - 3 ) = 7 

x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)

và ( x - 1 )( y - 3 ) = 7

( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)

(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)

( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)

Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....

Hoàng Đỗ Việt
Xem chi tiết
Minh Anh Vũ
Xem chi tiết
missing you =
30 tháng 7 2021 lúc 17:14

a, đk: \(x\ge0,x\ne9,x\ne4\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2-\sqrt{x}}{-\left(\sqrt{x}-3\right)\left(2-\sqrt{x}\right)}=\dfrac{-1}{\sqrt{x}-3}\)

b,\(Q< -1=>\dfrac{-1}{\sqrt{x}-3}+1< 0< =>\dfrac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(< =>\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)

\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\)\(< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\end{matrix}\right.\)\(< =>9< x< 16\)

c, \(=>2Q=\dfrac{-2}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\in Z\)

\(< =>\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)\(=>x\in\left\{16;4\right\}\)(loại 4)

=>x=16

Nhan Thanh
30 tháng 7 2021 lúc 18:12

a) \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\) 

Ta có \(x-5\sqrt{x}+6=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>9\\x>2\end{matrix}\right.\) \(\Leftrightarrow x>9\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-3\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(x-4\right)-\left(x-2\sqrt{x}-3\right)-\left(3\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-1}{\left(\sqrt{x}-3\right)}=\dfrac{1}{3-\sqrt{x}}\)

b) \(Q< -1\Leftrightarrow\dfrac{1}{3-\sqrt{x}}< -1\) \(\Leftrightarrow\dfrac{1}{3-\sqrt{x}}+1< 0\) \(\Leftrightarrow\dfrac{4-\sqrt{x}}{3-\sqrt{x}}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-\sqrt{x}>0\\3-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4-\sqrt{x}< 0\\3-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow9< x< 16\)

Vậy để \(Q< -1\) thì \(S=\left\{x/9< x< 16\right\}\)

c) \(2Q\in Z\Leftrightarrow\dfrac{2}{3-\sqrt{x}}\in Z\)

\(\Rightarrow3-\sqrt{x}\inƯ\left(2\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}3-\sqrt{x}=2\\3-\sqrt{x}=-2\\3-\sqrt{x}=1\\3-\sqrt{x}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=25\\x=4\\x=16\end{matrix}\right.\)

Kết hợp với ĐKXĐ,ta có để \(2Q\in Z\) thì \(x\in\left\{16;25\right\}\)

 

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 0:25

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)

Ta có: \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4-x+2\sqrt{x}+2-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-1}{\sqrt{x}-3}\)

c) Để 2Q là số nguyên thì \(-2⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1\right\}\)

Lucifer
Xem chi tiết
Phạm Tuấn Đạt
24 tháng 11 2018 lúc 21:28

\(\frac{2\sqrt{x}-1}{\sqrt{x}+2}=\frac{2\sqrt{x}+4-5}{\sqrt{x}+2}=\frac{2\left(\sqrt{x}+2\right)-5}{\sqrt{x}+2}=2-\frac{5}{\sqrt{x}+2}\)

Để 

\(\Rightarrow\frac{5}{\sqrt{x}+2}\in Z\)

\(\Rightarrow5⋮\sqrt{x}+2\)

\(\Rightarrow\sqrt{x}+2\in\left(-1;1;-5;5\right)\)

\(\Rightarrow\sqrt{x}\in\left(-3;-1;-7;3\right)\)

\(\Rightarrow x\in\left(9;1;49\right)\)

Trần Hoàng Phương Anh
Xem chi tiết
Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 23:07

1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

Cứt :))
Xem chi tiết
Quốc Đạt
18 tháng 6 2019 lúc 15:22

\(N=\frac{7}{x-1}\)

=> x-1 thuộc Ư(7)={-1,-7,1,7}

=> n thuộc {0,-6,2,8}

\(P=\frac{x+1}{x-1}\Leftrightarrow P=\frac{x-1+2}{x-1}\Leftrightarrow P=\frac{x-1}{x-1}+\frac{2}{x-1}\Leftrightarrow P=1+\frac{2}{x-1}\)

=> x-1 thuộc Ư(2)={-1,-2,1,2}

=> n thuộc {0,-1,2,3}

Trần Thanh Phương
18 tháng 6 2019 lúc 15:32

\(M=\frac{x+2}{3}\)nguyên

\(\Leftrightarrow x+2⋮3\)

\(\Rightarrow x+2\in B\left(3\right)=\left\{0;\pm3;\pm6;...\right\}\)

\(\Rightarrow x\in\left\{-2;1;-5;4;-8;...\right\}\)

Vậy....

Trang-g Seola-a
Xem chi tiết