Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hải Yến
Xem chi tiết
nguyen duc thang
26 tháng 10 2017 lúc 16:28

n2+ n + 1 = n . ( n + 1 ) + 1 

Vì n . ( n + 1 ) là hai số liên tiếp lên có tận cùng là 0,2,6

=> n . ( n + 1 ) + 1 có tận cùng là 1,3,7 không chia hết cho 5

MÀ số chia hết ch 4 phải có hai chữ số tận cùng chia hết  cho 4 mà số chia hết cho 4 phải là số chẵn => n . ( n + 1 ) + 1 không chia hết cho 4

    Vậy n . ( n + 1 ) + 1 không chia hết cho 4,5 ( dpcm )

Nguyễn Thị Hải Yến
Xem chi tiết
nguyen duc thang
26 tháng 10 2017 lúc 16:20

n2+ n + 1 = n ( n + 1 ) + 1

Thử các trường hợp n tận cùng là các chữ số 0, 1, 2, .., 9 ta có nhận xét:  n. ( n + 1 ) là hai số liên tiếp nên có tận cùng là 0 , 2 , 6 

=> n .( n + 1 ) + 1 có tận cùng là 1 ,  3 , 7 không chia hết cho 5  (vì không có tận cùng là 5 hoặc 0).

Thêm nữa n.(n + 1) +1 có chữ số tận cùng là 1 , 3 , 7 nên là số lẻ => Nó không chia hết cho 2 => Nó cũng ko chia hết cho 4.

  Vậy n2+ n + 1 không chia hết cho 4,5 ( dpcm )

Nguyễn Thị Thu Hương
Xem chi tiết
Nguyễn Bá Hoàng Minh
26 tháng 10 2017 lúc 19:33

Dat n\(^2\)+n+1=A

A=n(n+1)+1

Ma n(n+1) tan cung la 0,2,6

\(\Rightarrow\)A tan cung la 1,3,7

\(\Rightarrow\)A tan cung la le\(\Rightarrow\)A ko chia het cho 4(dpcm)

A ko tan cung la 0,5\(\Rightarrow\)A ko chia het cho 5(dpcm)

Trần Hoàng Việt
26 tháng 10 2017 lúc 19:41

Đặt \(n^2+n+1\)là A ta có 

A=n(n+1)+1

Mà n(n+1) tận cùng là các số 0;2;6

A tận cùng là các số  1,3,7

A  tận cùng là lẻA ko chia het cho 4(dpcm)

A ko tan cung la 0,5A ko chia het cho 5(dpcm)

P/s tham khảo nha 

Sawada Tsunayoshi
Xem chi tiết
Đỗ Lê Tú Linh
8 tháng 12 2015 lúc 21:35

a)Nếu n=2k(kEN)

thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)

Nếu n=2k+1(kEN)

thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)

Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2

b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n

Nếu n=2k(kEN )

thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................

tương tự, n=3k;3k+1;3k+2

mỏi tay chết đi được, mấy con số còn bay đi lung tung

Veoo
Xem chi tiết
Xyz OLM
9 tháng 7 2021 lúc 10:24

a) Ta có n3 - n + 4 

= n(n2 - 1) + 4

= (n - 1)n(n + 1) + 4 

Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp) 

mà 4 \(⋮̸\)

=> n3 - n + 4 không chia hết cho 3

Khách vãng lai đã xóa
tôi là người thông minh
Xem chi tiết
Akai Haruma
29 tháng 1 2022 lúc 12:26

Bài 4:

$A+2=1+2+2^2+2^3+...+2^{11}$

$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$

$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+...+2^{10})\vdots 3$

Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$

Akai Haruma
29 tháng 1 2022 lúc 12:27

Bài 5:

$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ

$\Rightarrow n(n+1)$ chẵn 

$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh) 

 

Thái Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 14:59

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

Kiều Vũ Linh
29 tháng 10 2023 lúc 15:07

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

Ý Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 9:32

\(A=n\left(n+1\right)+1\)

Vì n(n+1) chia hết cho 2

nên A ko chia hết cho 2

Nguyễn Cao Minh
8 tháng 10 2022 lúc 7:16

sai roi

 

Đinh Thu Trang
Xem chi tiết