Cho tam giác abc cmr nếu ab^2 + ac^2 - ac.ac = bc^2 thì góc a = 60 độ.
Bài 1: cho tam giác ABC có góc B=góc C
CMR: AB=AC
Bài 2 : Cho tam giác ABC có AB=AC; góc A= 60 độ
CMR: AB=AC=BC
Helpp mee -_-
BÀI 1 : Ta có tam giác ABC có góc B=góc C=>tam giác ABC cân tại A =>AB=AC
BÀI 2:TA có:tam giác ABC có AB=AC=>Tam giác ABC cân tại A mak koa góc A = 6O độ =>tam giác ABC đều=>AB=AC=BC
TICK NHA, MK GIẢI CHI TIẾT LẮM RÙI ĐÓ
Cho tam giác ABC nhọn với góc BAC=60 độ. CMR (BC^2)=(AB^2)+(AC^2)-AB*AC
Kẻ BH ⊥ AC tại H.Xét tam giác ABH có góc BHA = 90độ (cách kẻ)=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độXét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)Áp dụng định lý Py-ta-go ta có:AB² = BH² + AH²=> BH² = AB² - AH² (2)Xét tam giác BHC có góc BHC = 90độ (cách kẻ)=> Áp dụng định lý Py-ta-go ta có:BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)Thay (1) và (2) vào (3) ta có:BC² = (AB² - AH²) + AC² - AB.AC + AH²<=> BC² = AB² - AH² + AC² - AB.AC + AH<=> BC² = AB² + AC² - AB.AC (đpcm)
cho tam giác abc có góc b =60 độ ab=7cm bc=14cm trên bc lấy d sao cho D sao cho góc BAC= 60 độ gọc h là trung điểm bd :
a)tính hd
b)cmr adc cân
c)tam giác ABC là tam giác gì
d) cmr ab^2+ch^2=ac^2+bh^2
Cho tam giác ABC vuông tại A . Trên tia đối của tia AC lấy điểm D sao cho AD= AC . CMR
a, nếu góc DBC = 30 độ thì tam giác ABD đều và AC = 1/2 BC
b, nếu AC = 1/2 BC thì tam giác BCD đề và góc ABC = 30 độ
Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng :
a) Nếu góc A = 30 độ thì a^2 = b^2 + c^2 - bc\(\sqrt{3}\)
b) Nếu góc A = 60 độ thì a^2 = b^2 + c^2 - bc
1.CMR nếu ở miền trong tam giác ABC có điểm D sao cho AD=AB thì AB < AC
2 cho tam giác ABC vuông tại A (AB<AC) .Vẽ AH vuông góc với BC (H thuộc BC). CMR AB+AC<AH+BC
1.
Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC.
Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)
Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)
(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)
Mà \(\widehat{ADB}=\widehat{ABD}\)
=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)
=> AC>AB
Xét tam giác ABC vuông tại A
Theo BĐT tam giác: \(AB< AC+BC\)
Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)
\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)
Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)
Hay \(AB+AC< AH+2CH+BH+AC\)
Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)
Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)
Hay \(AB+AC< 2AH+2CH+BC\)
Tới đây bí rồi.
Câu 1. Cho hình thang ABCD ( BC // AD ) và góc B = ACD
a,CMR : AC.AC = AD.BC
b,Nghiên cứu bài toán đảo
Câu 2. Cho tam giác ABC có góc B = 2C
a, CMR : AC .AC = AB(AB+BC)
B, Nghiên cứu bài toán đảo
cho tam giác ABC , góc B= 60 , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD
a) tính độ dài HD
b) chứng minh rằng tam giác DAC can
c) tam giác ABC là tam giác gì ?
d) CMR : AB^2 + CH^2 = AC^2 + BH ^2
Sửa đề; BC=12cm
a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}=60^0\)
nên ΔABD đều
=>BD=AB=6cm
=>BH=3cm
b: Ta có: BD+DC=BC
nên DC=BC-BD=12-6=6(cm)
Xét ΔDAC có DA=DC
nên ΔDAC cân tại D
c: Xét ΔABC có
AD là đường trung tuyến
AD=BC/2
Do đó: ΔABC vuông tại A
cho tam giác ABC , góc B= 60 , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD
a) tính độ dài HD
b) chứng minh rằng tam giác DAC can
c) tam giác ABC là tam giác gì ?
d) CMR : AB^2 + CH^2 = AC^2 + BH ^2
cho tam giác ABC , góc B= 60 , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD
a) tính độ dài HD
b) chứng minh rằng tam giác DAC can
c) tam giác ABC là tam giác gì ?
d) CMR : AB^2 + CH^2 = AC^2 + BH ^2